Development of new concepts for the optimization of the structure and sensory properties of reduced-fat food products by means of protein functionalization and molecular-sensory methods.

Entwicklung neuer Konzepte zur Optimierung von Struktur und Sensorik fettreduzierter Lebensmittel durch Proteinfunktionalisierung und molekular-sensorische Methoden.

M.Sc. Caren Tanger, Prof. Dr.-Ing. Ulrich Kulozik
Background and Motivation

Risk for diet-related illnesses

Demand for new concepts related to a significant reduction of salt, sugar and fat in food products

Current concepts for fat reduction:
- Undesired side effects
- Reduction of product volume
- Negative influence on product texture and flavour perception

Sustainability matters

Demand for new concepts related to the exploration of plant-based alternative food ingredients

Challenges related to plant-based protein alternatives:
- Off-flavour
- Low solubility
- Low techno-functionality
Fat reduction in food leads to loss of consumer acceptance

Research Group I: Food and Bioprocess Engineering

- Compensation of the structural effect of fat by protein functionalization

Research Group II: Food Chemistry and Molecular Sensory Science

- Compensation of sensory perception of fat by flavour optimization

Establishment of a new platform of knowledge and methodology for the development of reduced-fat food products
Concepts for the replacement of fat in food products

Utilization of microparticulated milk proteins to maintain a creamy mouthfeel in fat-reduced products

40% fat cheese

- Casein (100 - 300 nm)
- Native Whey Protein (3 - 5 nm)
- Fat (1 - 10 μm)

reduced-fat cheese

- Microparticulated Whey Protein (MWP) (1 - 10 μm)
Microparticulation of proteins

Influencing factors on aggregation
- temperature
- shear rate
- heating time
- composition (Protein, Lactose, Calcium)
- pH
- pre-denaturation of the proteins
Methods for microparticulation of proteins

- High pressure homogenizer
- Dispersion unit
- Scraped surface heat exchanger

Protein concentration as limiting factor (max. 10%)

Advantages using **extrusion** for production of microparticulates:
- High viscosities and thus, high protein concentrations feasible
- High variation possibilities of process parameters
- Low holding times at high degree of denaturation
- Low amount of caking
Project Outline

WP 1
Chemical-physical and sensory characterization of purchased proteins

WP 2
Functionalization of single and hybrid systems (pea, potato and milk protein)

WP 3
Characterization of surface activity and foam properties of the microparticulates

WP 4
Development of fat-reduced model milk products

WP 5
SENSOMICS- and flavor-protein-interaction-studies

WP 6
Flavor-optimization of the fat-reduced model milk products

WP 7
Project management and transfer of knowledge
Physico-chemical characterization

<table>
<thead>
<tr>
<th></th>
<th>Pea protein isolate</th>
<th>Potato protein isolate</th>
<th>Whey protein isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein concentration</td>
<td>80% - 90%</td>
<td>80%</td>
<td>90%</td>
</tr>
<tr>
<td>Solubility</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Protein profile</td>
<td>Several protein fractions</td>
<td>Two protein fractions</td>
<td>Two protein fractions</td>
</tr>
<tr>
<td>Nativity</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>
Protein profile pea

<table>
<thead>
<tr>
<th>Pea protein isolate</th>
<th>Salt soluble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein concentration</td>
<td>80% - 90%</td>
</tr>
<tr>
<td>Solubility</td>
<td>low</td>
</tr>
<tr>
<td>Protein profile</td>
<td>Several protein fractions</td>
</tr>
<tr>
<td>Nativity</td>
<td>low</td>
</tr>
</tbody>
</table>

- Salt soluble: IEP: pH 4.5
 - 11S Legumin, Hexamer (360-410 kDa)
 - Basic subunit
 - Disulfide bridge
 - Monomer 60-80 kDa
 - 7S Vicilin, Trimer (150-200 kDa)
 - 7S Convicilin, Tetramer (210-290 kDa)

- Globulin 65-80%
- Glutelin <10%
- Albumin 15-25%
- Prolamin <10%
- Water soluble: Low molecular weight protein

(Swanson, 1990; Shand et al. 2007)
Protein profile potato

- **Patatin (30-40%)**
 - 40-45 kDa, glycoprotein,
 - Low heat stability
 - 1 free thiol group

- **Protease inhibitors (40-50%)**
 - Consist out of 7 subgroups, 5-25 kDa
 - Decrease digestibility
 - Inactivated upon heating

<table>
<thead>
<tr>
<th>Potato protein isolate</th>
<th>Whey protein isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>90%</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Two protein fractions</td>
<td>Two protein fractions</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

- **Minor proteins**

Food and Bioprocess Engineering
Protein profile whey

β-Lactoglobulin

- 40 – 50%
- Amount in whey: 3.5 – 5 g/l
- Globular protein
- 18.4 kDa
- 1 free thiol group
- 2 internal disulphide bonds

α-Lactalbumin

- 10 – 15%
- Amount in whey: 1 – 1.5 g/l
- Globular protein
- 14.2 kDa
- Ability to bind calcium:
 - holo-α-La (+Ca)
 - apo-α-La (-Ca)

Whey protein isolate

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>high</td>
</tr>
<tr>
<td>high</td>
<td>Two protein fractions</td>
</tr>
</tbody>
</table>
Producing „native“ pea proteins on laboratory scale

<table>
<thead>
<tr>
<th></th>
<th>Pea protein isolate</th>
<th>Potato protein isolate</th>
<th>Whey protein isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nativity</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

Extraction method

<table>
<thead>
<tr>
<th>Method</th>
<th>Pea protein isolate</th>
<th>Potato protein isolate</th>
<th>Whey protein isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkali extraction – isoelectric precipitation</td>
<td>+</td>
<td>-</td>
<td>Low solubility</td>
</tr>
<tr>
<td>Alkali extraction – isoelectric precipitation modified</td>
<td>High solubility, fast extraction</td>
<td>Possibly damaged protein structure</td>
<td></td>
</tr>
<tr>
<td>Salt extraction</td>
<td>High solubility</td>
<td></td>
<td>Low denaturation peak</td>
</tr>
<tr>
<td>Micellar extraction</td>
<td>Probably lowest damage (clear denaturation peak)</td>
<td></td>
<td>Low solubility</td>
</tr>
</tbody>
</table>
Microparticulation of plant protein in comparison to whey protein on small scale

WPC = whey protein concentrate; WPI = whey protein isolate; Pat = potato protein isolate; PPe = laboratory extracted pea protein; PPC = commercial pea protein isolate
Microparticle characteristic – size and shape

- Plant protein particles are in a suitable size range
 - Extracted and commercial pea protein behave differently!
- Plant protein microparticles are round

Graph:
- Different lines represent different protein types:
 - PPe
 - PPC
 - Pat
 - WPC

Images:
- Microscopy images of proteins at different shear rates (100 s⁻¹ and 1000 s⁻¹)
 - PPe
 - PPC
 - Pat
 - WPC

Observations:
- Extracted and commercial pea protein behave differently.
- Plant protein microparticles are round.
Thermal stability of whey and plant proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>$T_{\text{denat}} [^\circ\text{C}]$</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patatin</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Whey protein isolate</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Laboratory extracted pea protein</td>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

* Commercial pea protein did not show any peak by DSC analysis → high initial denaturation
Possible reaction mechanism of thiol groups

Thiol reaction: $R_1\text{-SH}^* + R_2\text{-SH}^* = R_1\text{-S-S-}R_2$

Thiol-disulphide interchange: $R_1\text{-SH}^* + R_2\text{-S-S-}R_3 = R_1\text{-S-S-}R_2 + R_3\text{-SH}^*$

<table>
<thead>
<tr>
<th></th>
<th>β-LG</th>
<th>Patatin</th>
<th>Legumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disulphide</td>
<td>2</td>
<td>0</td>
<td>1-2</td>
</tr>
<tr>
<td>Thiol group</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Plant protein microparticles are mostly stabilized by hydrophobic interactions

Softer particles compared to whey protein particles

Image: Comparative Assessment of Thermal Aggregation of Whey, Potato, and Pea Protein under Shear Stress for Microparticulation

Authors: Caix Teng, Paola Quintana Ramos, and Ulrich Kubacki
Thermo-mechanical treatment – extrusion set-up

Process parameter
- Case temperature
- Screw speed
- Screw composition
- Mass flow

- Same as used for whey protein microparticulation (Wolz et al. 2016)
Pea and potato protein microparticulation – large scale (extruder)

- Pea protein microparticles have a smooth peanut butter like texture
- Potato protein microparticles are foamy and show big visible particles

> Commercial pea protein isolates is investigated in more detail
Influence of shear rate on particle size – large scale

- Small shear rate is sufficient to limit particle size and prevent gel formation
 - Similar to whey protein -> impact on particle size has only been seen at lower shear rate (< 200 rpm)
 - Below 200 rpm extrusion of pea protein was not continuous
Influence of temperature on particle size

- D_{90} increase at 100° C
- Hydrophobic interaction increase in intensity with increasing temperature
- Reactivity of thiol groups increase at increasing temperatures
 - Shear cannot limit particle growth due to the increase in intensity of protein interaction
 - Temperatures between 75° C and 120° C most suitable
Effect of drying on particle size

- Drying does not increase particle size of microparticulate
- Drying does change protein-flavour binding

Commercial pea protein

Dilute with water

E86, n = 600 rpm, T = 100 °C, m = 4 kg/h

$Q_\beta(x) [%]$

Particle size [µm]
WP 4: Development of a model milk dessert

7% Powdered sugar
47% Skim milk yoghurt (0.1% fat)
1% Stabiliser (HAMULSION)

45% Pasteurized cream

Microparticulates as substitutes (50%)

Non-foamed dessert

Dispersing

Foamed dessert

Dispersing

Whipping
Flavour profile of full-fat and fat-reduced milk dessert

- Sweet
- Sour
- Umami
- Salty
- Bitter
- Ads
- Creamy
- Mouthfulness
- Kokumi
- Fatty
- Sour
- Rancid
- Vanilla-like
- Milk-like
- Grassy, green, bean-like

Intensity

Reference
Fresh MP MD
Spray-dried MP MD
Freeze-dried MP MD
Summary:

• Different functionalities of pea, potato, and whey protein lead to different thermally induced aggregation behaviour

• Aggregates / microparticles could possibly be used as fat replacer

Outlook:

Can aggregates / microparticles also be used for other applications (foam stability, emulsion stability, food structuring)?

Can the microparticulation process also be used for functionalising other plant-based proteins (oat, sunflower, chickpea, etc.)?
Thank you for your attention!

Das IGF-Vorhaben 20197 N der Forschungsvereinigung Forschungskreis der Ernährungsindustrie e. V. (FEI), Godesberger Allee 142-148, 53175 Bonn, wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

M.Sc. Caren Tanger
☎️ +49-(0)8161-71 3534
caren.tanger@tum.de

Prof. Dr.-Ing. Ulrich Kulozik
☎️ +49-(0)8161-71 4205
ulrich.kulozik@tum.de

Chair for Food and Bioprocess Engineering
Weihenstephaner Berg 1
D-85354 Freising

... ein Projekt der Industriellen Gemeinschaftsforschung (IGF)

gefördert durch/via

Das IGF-Vorhaben 20197 N der Forschungsvereinigung Forschungskreis der Ernährungsindustrie e. V. (FEI), Godesberger Allee 142-148, 53175 Bonn, wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Backup - slides
WP 2b: Influence of mass flow

- Mass flow influence screw filling
- Biggest particles at 4.5 kg / h
- Powder mass flow of 4.0 kg / h is most suitable (smallest particles) -> same as whey proteins
WP 2 b: Hybrid systems 50:50 WPC and PPI

- In hybrid systems particle size and protein interaction are temperature dependent
 - Whey protein start to denature at 70°C -> start of thiol-disulphide interchange -> more disulphide bonds are built
 - Whey protein only fully denatured at 130°C barrel temperature (Wolz, 2016)