
Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

14

Berichte aus dem TFZ

Mutagenität der Partikelemissionen eines mit Rapsöl- und Dieselkraftstoff betriebenen **Traktors**

Mutagenität der Partikelemissionen eines mit Rapsöl- und Dieselkraftstoff betriebenen Traktors

Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

Mutagenität der Partikelemissionen eines mit Rapsöl- und Dieselkraftstoff betriebenen Traktors

Klaus Thuneke
Peter Emberger
Thomas Gassner
Dr. Edgar Remmele
Dr. Bernhard Widmann

Helgard Fischer Hansjürgen Krist Dr. Jürgen Schnelle-Kreis Dr. Klaus Hoppenheidt

Berichte aus dem TFZ 14

Straubing, Oktober 2007

Titel: Mutagenität der Partikelemissionen eines mit Rapsöl- und Dieselkraftstoff

betriebenen Traktors

Autoren: Klaus Thuneke, Peter Emberger, Thomas Gassner, Dr. Edgar Remmele,

Dr. Bernhard Widmann, Helgard Fischer (bifa), Hansjürgen Krist (bifa),

Dr. Jürgen Schnelle-Kreis (bifa), Dr. Klaus Hoppenheidt (bifa)

Projektleiter: Klaus Thuneke

Bearbeiter: Klaus Thuneke, Peter Emberger, Thomas Gassner, Thomas Kießlinger,

Dr. Edgar Remmele, Dr. Bernhard Widmann, Helgard Fischer (bifa), Hansjürgen Krist (bifa), Dr. Jürgen Schnelle-Kreis (bifa), Dr. Klaus

Hoppenheidt (bifa)

in Kooperation mit: bifa Umweltinstitut

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bayerischen Staatsministeriums für Landwirtschaft und Forsten gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

© 2007

Technologie- und Förderzentrum (TFZ)

im Kompetenzzentrum für Nachwachsende Rohstoffe, Straubing

Alle Rechte vorbehalten.

Kein Teil dieses Werkes darf ohne schriftliche Einwilligung des Herausgebers in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt, verbreitet oder archiviert werden.

ISSN: 1614-1008

Hrsg.: Technologie- und Förderzentrum (TFZ)

im Kompetenzzentrum für Nachwachsende Rohstoffe

Schulgasse 18, 94315 Straubing

E-Mail: poststelle@tfz.bayern.de lnternet: www.tfz.bayern.de

Redaktion: Klaus Thuneke, Peter Emberger, Herbert Sporrer

Verlag: Eigenverlag, Straubing

Erscheinungsort: Straubing Erscheinungsjahr: 2007

Gestaltung: Klaus Thuneke, Herbert Sporrer, Peter Emberger, Thomas Gassner

Fotonachweis: Klaus Thuneke (6), Thomas Gassner (2)

Vorwort

Dank gilt dem Bayerischen Staatsministerium für Landwirtschaft und Forsten, München, für die Förderung des Vorhabens. Besonders bedanken möchten wir uns beim Referat M 5, dem Referatsleiter Herrn MR Dr. Rupert Schäfer und seinen Mitarbeitern für die gute Zusammenarbeit und das entgegengebrachte Vertrauen.

Weiterer Dank gilt der Bayerischen Landesanstalt für Landwirtschaft (LfL), insbesondere dem Lehr-, Versuchs- und Fachzentrum für Ökologischen Landbau (LVFZ) Kringell für die Bereitstellung des Traktors und die Unterstützung bei der Durchführung des Vorhabens. Ein ganz herzliches Dankeschön geht an Herrn Wolfgang Löw für die hervorragende Zusammenarbeit, vor allem auch für die ausdauernde und zuverlässige Unterstützung bei den Emissionsmessungen.

Bedanken möchten wir uns auch beim Umrüster des untersuchten Traktors, Herrn Hausmann, sowie bei Herrn Marco Franz von Same Deutz-Fahr, für die bereitwillige Weitergabe von Informationen und die große Hilfe bei verschiedenen Fragestellungen.

Die Autoren

Inhaltsverzeichnis

Inhalts	verzeichnis	7
Abbild	ungsverzeichnis	9
Tabelle	enverzeichnis	11
1	Einleitung	13
2	Zielstellung	15
3	Bisherige Untersuchungen	17
4	Material und Methodik	19
4.1	Traktor	19
4.1.1	Technische Daten	
4.1.2	Umrüstung	
4.1.3	Betriebsdatenerfassung	
4.2	Kraftstoff	
4.2.1 4.2.2	RapsölkraftstoffDieselkraftstoff	
4.3	Prüfstand	
4.3 .1	Aufbau	
4.3.2	Erfassung der Randbedingungen	
4.3.3	Bestimmung von Motorleistung, Motordrehzahl und Kraftstoffverbrauch	
4.3.4	Gasanalyse	
4.3.5	Partikelmassebestimmung	31
4.4	Durchführung der Emissionsmessungen	32
4.4.1	Vorbereitung des Traktors und des Prüfstands	
4.4.2 4.4.3	NRSC-PrüfzyklusPartikelprobenahme für die Mutagenitätstests	
	-	
4.5	Versuchsvarianten	
4.6	Auswertung	
4.7	Untersuchung der Abgaspartikel	
4.7.1	Untersuchung zur Mutagenität	
4.7.1.1 4.7.1.2	Probenaufbereitung	
4.7.1.2	Anzucht der Salmonellen	
4.7.1.4	Testansatz	
4.7.1.5	Auswertung	44
4.7.2	Untersuchungen zum Gehalt an PAK und Nitro-PAK	46

5	Ergebnisse	47
5.1	Limitierte Abgaskomponenten	47
5.1.1	Gesamtbeobachtungszeitraum	
5.1.2	Mutagenitätsuntersuchungen	
5.2	Analyse der Abgaspartikel	53
5.2.1	Bestimmung der Mutagenität mittels Ames-Test	53
5.2.1.1	Mutantenstamm TA98 ohne S9-Mix	
5.2.1.2	Mutantenstamm TA98 mit S9-Mix	57
5.2.1.3	Mutantenstamm TA100 ohne S9-Mix	61
5.2.1.4	Mutantenstamm TA100 mit S9-Mix	66
5.2.1.5	Vergleich der Ergebnisse	
5.2.2	Chemische Analyse der Abgaspartikel	73
6	Diskussion	79
Zusam	menfassung	83
Quelle	nverzeichnis	85
Anhan	g	87

Abbildungsverzeichnis

Abbildung 1:	Betriebsdatenerfassung an einem Deutz-Fahr Agrotron TTV 1160 zur Durchführung von Emissionsmessungen	21
Abbildung 2:	Einbauposition der Abgastemperatursensoren und des Motoröltemperatursensors an einem Deutz-Fahr Agrotron TTV 1160	21
Abbildung 3:	Aufbau des Emissionsprüfstands am Technologie- und Förderzentrum (TFZ)	26
Abbildung 4:	Aufbau zur Bestimmung des Kraftstoffverbrauchs mittels Wägung des Versuchskraftstoffbehälters	30
Abbildung 5:	Lage der Prüfphasen im Leistungs-/Drehmomentdiagramm	34
Abbildung 6:	Waschung der Filterhalter mit Dichlormethan (links) und Entfernung des beladenen Filterhalters aus der Partikelprobenahmevorrichtung (rechts)	36
Abbildung 7:	Schematische Darstellung der Versuchsvarianten für die Emissionsmessungen zur Bestimmung der mutagenen Wirkung von Partikeln	38
Abbildung 8:	Schematische Darstellung des Salmonella-Mutagenitätstests (Ames-Test)	44
Abbildung 9:	Idealisierte Dosis-Wirkungsbeziehung. Gekennzeichneter Bereich: Relevanter Anteil der Dosis-Wirkungsbeziehung für die Auswertung von Ames-Tests	45
Abbildung 10:	CO-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)	48
Abbildung 11:	NO _x -Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)	49
Abbildung 12:	HC-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)	49
Abbildung 13:	Partikelmasse-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)	50
Abbildung 14:	CO-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen	51
Abbildung 15:	NO _x -Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen	51
Abbildung 16:	HC-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen	

Abbildung 17:	Partikel-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen	52
Abbildung 18:	Vergleich der mit dem TA98-Stamm ohne S9-Mix erzielte Dosis- Wirkungsbeziehungen für die Positivkontrolle mit 3-NBA sowie für die Extrakte aller Proben	56
Abbildung 19:	Vergleich der mit dem TA98-Stamm mit S9-Mix erzielten Dosis- Wirkungsbeziehungen für die Positivkontrolle mit 2-AF sowie für die Extrakte aller Proben	61
Abbildung 20:	Vergleich der mit dem TA100-Stamm ohne S9-Mix erzielten Dosis- Wirkungsbeziehungen für die Positivkontrolle mit MMS sowie für die Extrakte aller Proben	62
Abbildung 21:	Vergleich der mit dem TA100-Stamm mit S9-Mix erzielten Dosis- Wirkungsbeziehungen für die Positivkontrolle mit 2-AF sowie für die Extrakte aller Proben	66
Abbildung 22:	Anzahl an zusätzlichen Revertanten (Netto-Revertanten) bezogen auf 1 mg der Partikelproben	71
Abbildung 23:	Anzahl an zusätzlichen Revertanten (Netto-Revertanten) pro Liter Abgas (unverdünnt)	71
Abbildung 24:	Relative Mutagenität von Abgaspartikeln beim Betrieb mit Rapsölkraftstoff im Vergleich zum Betrieb mit Dieselkraftstoff, bezogen auf Partikelmasse und Abgasvolumen beim 8-Phasen-Prüfzyklus und im Leerlauf	73
Abbildung 25:	Vergleich der PAK-Summen-Konzentrationen in den Rapsöl- und Dieselabgaspartikelproben über den gesamten Zyklus, im Leerlauf sowie der Blindprobe	76
Abbildung 26:	Vergleich der PAK-Konzentrationen in den Proben aus den Gesamtzyklen beim Betrieb mit Rapsöl- und Dieselkraftstoff	77
Abbildung 27:	Vergleich der PAK-Konzentrationen in den Proben aus den Leerlaufphasen beim Betrieb mit Rapsöl- und Dieselkraftstoff	78

Tabellenverzeichnis

Tabelle 1:	Technische Daten des Traktors Deutz-Fahr Agrotron TTV 1160	19
Tabelle 2:	Erfasste Messgrößen, Messstellen und Messgrößenaufnehmer der Betriebsdatenerfassung an einem Deutz-Fahr Agrotron TTV 1160	20
Tabelle 3:	Anforderungen der DIN V 51605 und Qualität des für die Emissionsmessungen verwendeten Rapsölkraftstoffs	22
Tabelle 4:	Ergebnisse der Elementaranalyse des für die Emissionsmessungen verwendeten Rapsölkraftstoffs	23
Tabelle 5:	Ergebnisse des Elementscreenings mittels ICP-OES des für die Emissionsmessung verwendeten Rapsölkraftstoffs	23
Tabelle 6:	Ergebnisse der Elementaranalyse des für die Emissionsmessungen verwendeten Dieselkraftstoffs	23
Tabelle 7:	Anforderungen der DIN EN 590 und Qualität des für die Emissionsmessungen verwendeten Dieselkraftstoffs	24
Tabelle 8:	Ergebnisse des Elementscreenings mittels ICP-OES des für die Emissionsmessung verwendeten Dieselkraftstoffs	25
Tabelle 9:	Erfasste Messgrößen mit Messstellen und Messgrößen-Aufnehmer am Abgasprüfstand des Technologie- und Förderzentrums (TFZ)	27
Tabelle 10:	Abweichungen zum Typprüfungsverfahren nach Richtlinie 97/68/EG	30
Tabelle 11:	Technische Daten der Messgeräte zur Analyse der gasförmigen Abgasbestandteile	31
Tabelle 12:	Übersicht zu den acht Prüfphasen nach Richtlinie 97/68/EG [3]	34
Tabelle 13:	Übersicht zur Dauer der Partikelprobenahme bei den einzelnen Prüfphasen des 8-Phasen-Zyklus in Anlehnung an die Richtlinie 97/68/EG	35
Tabelle 14:	Ergebnisse der Vorversuche zur Ermittlung des Einflusses der Filterkonditionierung auf das Filtergewicht	37
Tabelle 15:	Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für das geprüfte DMSO	53
Tabelle 16:	Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für die Positivkontrolle (3-NBA) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb	54
Tabelle 17:	Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)	55
Tabelle 18:	Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für das geprüfte DMSO	57
Tabelle 19:	Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für die Positivkontrolle (2-AF) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb	59

Tabelle 20:	Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)	50
Tabelle 21:	Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für das geprüfte DMSO	51
Tabelle 22:	Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für die Positivkontrolle (MMS) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb	54
Tabelle 23:	Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)	5 5
Tabelle 24:	Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für das geprüfte DMSO	56
Tabelle 25:	Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für die Positivkontrolle (2-AF) sowie die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb	58
Tabelle 26:	Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe	59
Tabelle 27:	Ermittelte Anzahlen an zusätzlichen Revertanten bezogen auf ein Milligramm der Prüfsubstanzen bzw. auf einen Liter Abgas (unverdünnt)	70
Tabelle 28:	Ergebnisse der chemischen Analyse für Nitro-PAK	74
Tabelle 29:	Ergebnisse der chemischen Analyse für PAK	75
Tabelle 30:	Übersicht bisheriger Untersuchungen zur Mutagenität von Rapsölkraftstoff	30

1 Einleitung

Die Nutzung von Rapsölkraftstoff für den Betrieb von pflanzenöltauglichen Traktoren kann einen erheblichen Beitrag zum Klimaschutz durch Einsparung von CO₂-Emissionen leisten. Darüber hinaus bietet die Nutzung von Rapsölkraftstoff weitere Vorteile hinsichtlich des Boden- und Gewässerschutzes, der Erhöhung der Versorgungssicherheit und Steigerung der Wertschöpfung in der Landwirtschaft durch heimische Kraftstofferzeugung. Aufgrund der Energiesteuerbefreiung von Rapsölkraftstoff im Bereich der Landwirtschaft bietet sich in vielen Fällen auch die Möglichkeit der Kraftstoffkosteneinsparung im Vergleich zur Nutzung von fossilem Dieselkraftstoff.

Voraussetzung für den zuverlässigen Betrieb eines pflanzenöltauglichen Dieselmotors mit Rapsölkraftstoff ist ein hochwertiger Kraftstoff, der die Anforderungen der Vornorm DIN V 51605 erfüllt. Rapsölkraftstofftaugliche Traktoren, die direkt von Landmaschinenherstellern angeboten werden, befinden sich derzeit in der Markteinführung. Aus diesem Grund werden bislang die Serien-Dieselmotoren in Traktoren auf den Betrieb mit Rapsölkraftstoff nachträglich angepasst. Derartige Umrüstungen werden in Deutschland von mehr als 40 Unternehmen angeboten.

Aufgrund der zunehmenden Nutzung von Rapsölkraftstoff in der Praxis sind derzeit noch offene Fragestellungen hinsichtlich der Emissionen von rapsölkraftstoffbetriebenen Dieselmotoren von großer Bedeutung. Untersuchungen zu den gesetzlich limitierten Emissionen von umgerüsteten Dieselmotoren sind weithin verfügbar, wenngleich für moderne Motorgenerationen oft Lücken bestehen. Auch hinsichtlich der Veränderung des Emissionsbildes über einen längeren Betriebszeitraum hinweg liegen nur wenige Ergebnisse vor.

Partikelemissionen aus Dieselmotoren sowie deren Wirkung auf den menschlichen Organismus stehen wegen der potenziellen Gesundheitsgefährdung in besonderem öffentlichen Interesse. Epidemiologische Studien weisen auf ein herzschädigendes und kanzerogenes Potenzial der Partikel aus Verbrennungsmotoren hin. Darüber hinaus besitzt Dieselabgas eine mutagene Wirkung, die meist mittels Bakterienstämmen anhand des Ames-Tests nachgewiesen wird. Hierzu gibt es bereits eine Vielzahl von Untersuchungen, wenn auch zur richtigen Deutung der Wirkung von Dieselabgasen auf den menschlichen Organismus noch große Forschungsanstrengungen notwendig sind [15].

Bislang wurden nur wenige Forschungsarbeiten zur mutagenen Wirkung von Partikelemissionen aus rapsölkraftstoffbetriebenen Motoren durchgeführt. Einzelne stichpunktartige Untersuchungen kommen zu gegensätzlichen Ergebnissen. Diese Untersuchungen wurden an verschiedenen Motoren mit unterschiedlich intensiven Maßnahmen zur Anpassung an die Verbrennung von Rapsölkraftstoff durchgeführt. Eine allgemeingültige Aussage über das mutagene und kanzerogene Potenzial von Rapsölkraftstoff bei der motorischen Verbrennung ist daraus nicht abzuleiten. Aufgrund von Medienberichten, wonach beim Einsatz von Rapsölkraftstoff im Vergleich zu Dieselkraftstoff ein extrem erhöhtes Krebspotenzial bestehe, herrscht in der Öffentlichkeit eine große Verunsicherung hinsichtlich der Gesundheitsgefährdung durch Rapsölkraftstoffemissionen. Weitere Untersuchungen zur Verbesserung der Datenbasis sind deshalb dringend erforderlich.

2 Zielstellung

Aufgrund der erheblichen Kenntnislücken hinsichtlich des mutagenen Potenzials von Rapsölkraftstoff, ist es Ziel dieser Untersuchung, die Partikelemissionen eines auf den Betrieb mit Rapsölkraftstoff umgerüsteten Traktors auf ihre Mutagenität hin zu überprüfen. Der Traktor soll dabei sowohl mit Rapsölkraftstoff als auch mit Dieselkraftstoff betrieben werden, um vergleichende Aussagen anstellen zu können. Zur besseren Interpretation der Ergebnisse soll zusätzlich auch die Zusammensetzung der Partikelproben hinsichtlich ausgewählter Komponenten bestimmt werden. Dies sind insbesondere die als kanzerogen eingestuften polyzyklischen aromatischen Kohlenwasserstoffe (PAK) sowie nitrierte PAK (Nitro-PAK).

Untersucht werden sollen Partikelproben, die gemäß des standardisierten Prüfzyklus nach Richtlinie 97/68/EG gewonnen werden. Weiterhin sollen auch Partikelproben bei Leerlauf auf ihre mutagene Wirkung untersucht werden. Leerlauf ist ein besonders relevanter Betriebspunkt, da hierbei der Kontakt des menschlichen Organismus mit den Abgasen am wahrscheinlichsten ist und die motorische Verbrennung häufig vermehrt unvollständig ist. Neben der mutagenen Wirkung sollen gleichzeitig auch die limitieren Abgasemissionen bei den Untersuchungen mit betrachtet werden.

Die Ergebnisse sollen dazu beitragen, einen Teil der bestehenden Kenntnislücken hinsichtlich der Mutagenität von Partikeln beim Motorbetrieb mit Rapsölkraftstoff zu schließen und ggf. eine differenzierte öffentliche Diskussion hinsichtlich der Umweltverträglichkeit des Einsatzes von Rapsölkraftstoff anzuregen.

Die vorliegende Untersuchung zur Mutagenität ist Teil eines Gesamtvorhabens zur Beurteilung des Betriebs- und Emissionsverhaltens von rapsölkraftstoffbetriebenen Traktoren und der Veränderung der Emissionen über einen längeren Betriebszeitraum. Eingesetzt werden dabei fachgerecht auf den Betrieb mit Rapsölkraftstoff umgerüstete Traktoren, die ausschließlich mit Rapsölkraftstoff nach Vornorm DIN V 51605 in der Praxis betrieben werden. Durch die kontinuierliche Aufzeichnung von Randbedingungen und Betriebsdaten mittels eines automatischen Datenerfassungssystems sowie der Dokumentation der Kraftstoff- und Motorölqualität, von Störungen, Wartungs- und Reparaturarbeiten soll das Betriebsverhalten der Traktoren bewertet und die Einsatzbedingungen beschrieben werden. Die Traktoren werden regelmäßig am Prüfstand des Technologie- und Förderzentrums (TFZ) hinsichtlich ihrer Abgasemissionen untersucht.

3 Bisherige Untersuchungen

BÜNGER et al. (2007) [1] untersuchten mit Hilfe des Ames-Tests die Mutagenität von Abgaspartikeln und -kondensat von einem nicht umgerüsteten Mercedes-Benz Motor OM 906 LA mit Turbolader und Ladeluftkühler (6-Zylinder, 205 kW, EURO III), die bei einem stationären 13-Stufen-Test (ohne Kaltstart) beim Betrieb mit Dieselkraftstoff, RME und Rapsölkraftstoff gewonnen wurden. Die Herkunft bzw. Qualität des Rapsölkraftstoffs ist nicht näher spezifiziert. Es erfolgte eine Vierfachbestimmung je Probe. Die Versuche fanden sowohl ohne als auch mit Vorwärmung (70 °C) des Rapsölkraftstoffs statt, letztere Variante, um ein einfaches Umrüstsystem mit Kraftstoffvorwärmung zu simulieren. Die Ergebnisse deuten auf eine etwa 10- bis 59-fach höhere mutagene Wirkung von Rapsöl- gegenüber Dieselkraftstoffpartikeln mit den Testorganismen TA98 und eine ca. 5- bis 22-fach höhere Mutagenität mit den Teststämmen TA100, jeweils sowohl mit als auch ohne metabolische Aktivierung durch Zugabe von Rattenleberextrakt ("S9-Mix") hin. Die Emissionen mit vorgewärmtem Rapsölkraftstoff weisen im Durchschnitt eine etwa 3-mal so hohe Mutagenität auf wie mit nicht vorgewärmtem Rapsölkraftstoff. Als Ursache für die höhere Mutagenität von vorgewärmtem Rapsölkraftstoff vermuten BÜNGER et al. (2007) [1] zum einen die feinere Tröpfchengröße des Einspritzstrahls, die eine größere Oberfläche und damit größere Reaktionszone für die Bildung mutagener Substanzen bildet oder zum anderen das spezielle Siedeverhalten von Rapsölkraftstoff, welches zu gesundheitsschädlichen Zersetzungsprodukten führen kann.

Eine frühere Untersuchung von STALDER et al. (1994) [14] an einem pflanzenöltauglichen Deutz Traktor mit Wirbelkammermotor, bei der die Partikelproben bei Volllast gewonnen wurden, kamen zu einem von Bünger et al. (2007) [1] abweichenden Ergebnis. Mit dem TA100-Stamm war die Mutagenität mit Rapsölkraftstoff beim ersten Versuch etwa viermal so hoch, wohingegen sie beim zweiten Versuch etwa nur ein siebtel des Wertes von Dieselkraftstoff betrug. Die mutagene Wirkung beim TA98-Stamm war bei beiden Motorläufen mit Dieselkraftstoff knapp 3-mal so hoch als mit Rapsölkraftstoff. Bei den Proben mit Zugabe von S9-Mix wurden bei Rapsöl über alle 8 Proben weniger als eine Mutante und bei Dieselkraftstoff im Mittel ca. 13,5 Mutanten festgestellt. Generell war jedoch die Anzahl der Mutanten bei diesen Versuchen sehr gering.

Weitere Untersuchungen zur Mutagenität wurden von KRIST et al. (2007) [6] [16] am bifa Umweltinstitut im Auftrag der bioltec evolv-ram GmbH durchgeführt. Hierbei wurde die Mutagenität von Abgaspartikeln, die während eines 13-Stufentests mit einem umgerüsteten (Zwei-Tank-System) EURO V Lkw des Typs DAF CF 85 mit Rapsöl- und Dieselkraftstoff gewonnen wurden, miteinander verglichen. Die Bestimmung erfolgte ebenfalls mit den Teststämmen TA98 und TA100 sowohl mit als auch ohne Zugabe von S9-Mix. Es zeigte sich, dass bezogen auf die extrahierte Partikelmenge, die Anzahl der Revertanten und damit die mutagene Wirkung bei den Abgaspartikel-Extrakten aus Pflanzenöl mit Umrüstung (Zwei-Tank-System) um den Faktor 2 bis 3 niedriger lag als bei den Dieselpartikel-Extrakten.

Eine umfangreiche Literaturzusammenstellung zur Bildung von Mutagenen bei der motorischen Verbrennung von Dieselkraftstoff erfolgt bei WACHTER (2007) [15]. Daraus geht hervor, dass die Produkte der unvollständigen Verbrennung wie z. B. aromatische und aliphatische Kohlenwasserstoffe sowie polyzyklische aromatische Kohlenwasserstoffe (PAK) teilweise an Kohlenstoff-Partikeln kondensieren und adsorbiert werden. Tests zeigten, dass insbesondere die polaren

Gruppen des organisch löslichen Partikelanteiles für ungefähr 90 % der mutagenen Aktivität verantwortlich sind, obwohl sie lediglich 30 % der Masse ausmachen. Weitere Versuche deuten darauf hin, dass vor allem nitrierte PAK (Nitro-PAK) die mutagene Wirkung bei Dieselpartikeln verursachen. Üblicherweise sind die zu den Nitro-PAK zählenden Nitro- und Dinitropyrene für bis zu 50 % der gesamten Mutagenität verantwortlich. Eine bedeutsame Reduktion der mutagenen Aktivität der Dieselabgase erscheint möglich, indem die Menge polynuklearer Vorläufersubstanzen reduziert oder physikalische Bedingungen des Verbrennungsprozesses optimiert werden. WACHTER (2007) [15] fasst Ergebnisse aus Ames-Tests zur Beurteilung der Mutagenität von Dieselabgasen wie folgt zusammen:

- "I. Die Mutagenität der Dieselabgase nimmt mit zunehmender Motorlast ab. Die Höhe der örtlichen Temperatur im Brennraum scheint eine wesentliche Rolle zu spielen.
- 2. Neben PAK-Molekülen ist auch eine bestimmte NO-Konzentration zur Bildung von Nitropyrenen notwendig.
- 3. Nitro- und Dinitropyrene haben sich als die aggressivsten Substanzen erwiesen, die in Dieselpartikeln enthalten sind. Der größte Teil der beobachteten Mutagenität geht zu Lasten dieser Kohlenwasserstoffe. Das wird aus den Ergebnissen mit Bakterienstämmen geschlossen, die gegenüber Nitro- und Dinitropyrenen resistent sind.
- 4. Der Aromatengehalt des Kraftstoffes (vor allem Mehrringaromaten) beeinflusst sehr nachhaltig die Bildung von Mutagenen.
- 5. Moderne Dieselmotoren sind weit weniger genetisch aggressiv als Triebwerke alter oder gegenwärtiger Produktion. Der Grund ist in der gegenüber herkömmlichen Motoren deutlich geringeren Stickoxid-Emission zu suchen.
- 6. Wassereinspritzung in das Saugrohr hat sich als sehr wirkungsvoll zur Senkung der genotoxischen Aktivität des Dieselabgases erwiesen.
- 7. Als Sofortmaßnahme zur Verbesserung der Situation, vor allem in Ballungsgebieten, bietet sich der Einsatz hochwertiger Kraftstoffe an. Dadurch könnte die Mutagenität des bestehenden Fahrzeugbestandes beträchtlich verringert werden.
- 8. Zukünftige Motorkonzepte bergen ein erhebliches Potenzial zur Reduktion der mutagenen Aktivität der Dieselpartikel. Diese Erscheinung scheint mit der von den Gesetzgebern erzwungenen Verringerung der Stickoxid-Emission einherzugehen.
- 9. Obschon Vergleiche mit der genotoxischen Wirkung von Zigarettenrauch zeigen, dass der Grad der Gesundheitsbedrohung durch Dieselpartikel als untergeordnet anzusehen ist, darf die potenzielle Gefahr dennoch nicht außer Acht gelassen werden. Die Verringerung der Mutagenität von Dieselabgasen fördert zudem die Akzeptanz des Dieselmotors. Hier werden die durch die Gesetzgebung förmlich erzwungenen Partikelfilter hilfreich sein."

4 Material und Methodik

4.1 Traktor

Die Untersuchungen zum Emissionsverhalten wurden an einem Traktor Deutz-Fahr Agrotron TTV 1160 durchgeführt. Der Traktor befindet sich auf dem Lehr-, Versuchs- und Fachzentrum für Ökologischen Landbau Kringell der Bayerischen Landesanstalt für Landwirtschaft (LfL) im Einsatz. Der Traktor ist mit einer Betriebsdatenerfassung ausgestattet, um das Betriebsverhalten in der Praxis dokumentieren zu können. Die Überprüfung des Emissionsverhaltens erfolgte am Prüfstand des Technologie- und Förderzentrums (TFZ).

4.1.1 Technische Daten

Der Traktor erfüllt die Anforderungen der Abgasstufe II und ist ausgestattet mit einem Motor der Baureihe BF6M1013EC mit einem Pumpe-Leitung-Düse-Hochdruckeinspritzsystem (PLD) der Deutz AG. Die technischen Daten des Traktors sind Tabelle 1 zu entnehmen.

Tabelle 1: Technische Daten des Traktors Deutz-Fahr Agrotron TTV 1160

Traktortyp	Deutz-Fahr Agrotron TTV 1160
Motortyp	Deutz BF6M1013EC
Anzahl der Zylinder	6
Leistung in kW / PS	119 / 162
Einspritzsystem	Pumpe-Leitung-Düse-Hochdruckeinspritzsystem
Baujahr	2005
Abgasstufe	II

4.1.2 Umrüstung

Der Traktor wurde mit einem Ein-Tank-System durch die Firma Hausmann, Wülfershausen auf den Betrieb mit Rapsölkraftstoff umgerüstet. Die Umrüstung basiert im Wesentlichen auf folgenden durchgeführten Anpassungen:

- Austausch der Einspritzdüsen
- Erhöhung des Einspritzdrucks
- Elektrische Beheizung der Einspritzdüsen
- Veränderungen des Kraftstoffsystems im Niederdruckbereich
- Einbau eines Kraftstoffvorwärmsystems

4.1.3 Betriebsdatenerfassung

Um das Betriebsverhalten in der Praxis dokumentieren zu können, ist der Traktor mit einem Betriebsdatenerfassungssystem ausgestattet. In das Fahrzeug wurde ein Datenlogger installiert, welcher Daten aus dem CAN-Bus lesen und aufzeichnen kann. Darüber hinaus wurden mehrere Sensoren an verschiedenen Stellen eingebaut, deren Daten ebenfalls im Datenlogger gespeichert werden. Der Datenlogger zeichnet beim Betrieb des Traktors alle 120 s die Werte der gemessenen Kenngrößen auf.

Tabelle 2 gibt einen Überblick über die erfassten Messgrößen, Abbildung 1 zeigt die Position der Messfühler im Motor-, Schmieröl-, und Kraftstoffsystem und Abbildung 2 zeigt die Einbauposition der Abgastemperaturfühler und des Motoröltemperaturfühlers.

Tabelle 2: Erfasste Messgrößen, Messstellen und Messgrößenaufnehmer der Betriebsdatenerfassung an einem Deutz-Fahr Agrotron TTV 1160

Messgrößen	Kürzel	Messstelle	Messgrößen-Aufnehmer
Betriebsstunden	Bh	Traktor	CAN-Bus Schlepper
GPS-Position	GPS	Traktor	GPS-Empfänger
Temperatur Umge- bungsluft	T_{LU1}	Kabinendach außen bei Rundum- kennleuchte	PT100 Thermofühler
Fahrgeschwindigkeit	v	Getriebe	CAN-Bus Schlepper
Betrieb Düsenheizung 70 °C	DH1	Relais Düsenheizung	Voltmeter
Betrieb Düsenheizung 100°C	DH2	Relais Düsenheizung	Voltmeter
Ladedruck	$p_{\rm LL}$	nach Abgasturbolader	CAN-Bus Schlepper
Temperatur Kraftstoff	T _{KT1}	Kraftstoffvorlaufleitung direkt nach Tank	PT100 Thermofühler
Temperatur Kraftstoff	T_{KE}	Anlegefühler an Einspritzleitung (Zylinder 1)	Mantel-Thermoelement Typ K
Temperatur Kraftstoff	T_{KR}	Rücklauf direkt nach Zylinder- kopf (vor Kraftstoffkühler)	CAN-Bus Schlepper
Kraftstoffverbrauch	В	berechneter Wert	CAN-Bus Schlepper
Temperatur Abgas (einzelne Zylinder)	T _{AZ1-6}	jeweils direkt nach Ausgang Zy- linderkopf im Krümmer	Mantel-Thermoelement Typ K
Temperatur Motoröl	T _{Oel}	im Nebenstrom vor Nebenstrom- ölfilter	Mantel-Thermoelement Typ K
Temperatur Kühlwasser	T_{W}	Kühlwasseraustritt aus Zylinder- kopf	CAN-Bus Schlepper
Motordrehzahl	n_{T}	Kurbelwelle	CAN-Bus Schlepper
Last	P_{TR}	Gaspedalstellung	CAN-Bus Schlepper

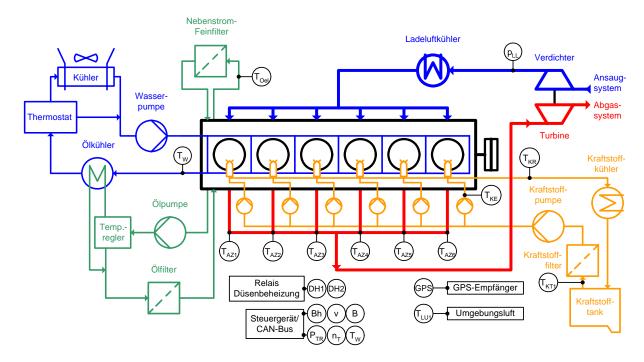


Abbildung 1: Betriebsdatenerfassung an einem Deutz-Fahr Agrotron TTV 1160 zur Durchführung von Emissionsmessungen

Abbildung 2: Einbauposition der Abgastemperatursensoren und des Motoröltemperatursensors an einem Deutz-Fahr Agrotron TTV 1160

4.2 Kraftstoff

4.2.1 Rapsölkraftstoff

Der für die Emissionsmessungen verwendete Rapsölkraftstoff, hergestellt in einer dezentralen Ölmühle nach dem Kaltpressverfahren ohne weitere Aufbereitung, entsprach bei allen Messungen den Anforderungen nach DIN V 51605. Die genauen Analyseergebnisse sind in Tabelle 3 aufgeführt. Weiterhin wurde für alle Rapsölkraftstoffproben die Elementarzusammensetzung analysiert und ein Elementscreening mittels ICP-OES¹ durchgeführt. Die Ergebnisse dieser Kraftstoffuntersuchungen sind Tabelle 4 und Tabelle 5 zu entnehmen.

Tabelle 3: Anforderungen der DIN V 51605 und Qualität des für die Emissionsmessungen verwendeten Rapsölkraftstoffs

Dichte (15 °C) in kg/m³ DIN EN ISO 3675	Flammpunkt in °C DIN EN ISO 2719	Heizwert in MJ/kg DIN 51900-2	Zündwilligkeit IP 498	Kin. Viskosität (40°C) in mm% DIN EN ISO 3104	Koksrückstand in Masse-% DIN EN ISO 10370	Iodzahl in g/100 g DIN EN 14111	Schwefelgehalt in mg/kg DIN EN ISO 20884	Gesamtverschmutzung in mg/kg DIN EN 12662	Säurezahl in mg KOH/g DIN EN 14104	Oxidationsstabilität (110 °C) in h DIN EN 14112	Phosphorgehalt in mg/kg DIN EN 14107	Summengehalt Ca/Mg in mg/kg E DIN EN 14538	Aschegehalt in Masse-% DIN EN ISO 6245	Wassergehalt in Masse-% DIN EN ISO 12937
	Anforderungen der DIN V 51605													
900- 930	min. 220	min. 36,00	min. 39	max. 36	max. 0,40	95- 125	max. 10	max. 24	max. 2,0	min. 6,0	max. 12	max. 20	max. 0,01	max. 0,075
							it bei der Bh) und							
919,0	254	37,25	47,8	35,2	0,17	108	<1	8	0,69	9,8	4	8	<0,001	0,054
							it bei der Bh) bis				l			
919,9	234	37,42	47,3	34,64	0,16	112	<1	2	0,95	7,9	8	16	0,003	0,049
				Rapsöll			it bei dei 4.2006 (ssungen	l			
920,0	243	37,28	44,8	34,72	0,23	112	<1	8	0,93	7,9	3	15	0,004	0,057

Berichte aus dem TFZ 14 (2007)

¹ Optische Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma (ICP-OES)

Kohlenstoff Wasserstoff **Sauerstoff** Stickstoff Verwendungsdatum in Masse-% in Masse-% in Masse-% in mg/kg 23.05. u. 25.05.2007 77,6 11,8 10,5 4 07.03 - 27.03.200777,9 12,0 10,0 5 19.04.2006 10,8 77,3 11,8 11

Tabelle 4: Ergebnisse der Elementaranalyse des für die Emissionsmessungen verwendeten Rapsölkraftstoffs

Tabelle 5: Ergebnisse des Elementscreenings mittels ICP-OES des für die Emissionsmessung verwendeten Rapsölkraftstoffs

Verwendungsdatum	Aluminium in mg/kg	Silizium in mg/kg	weitere Elemente in mg/kg
23.05. u. 25.05.2007	5	2	<1
07.03 - 27.03.2007	5	2	<1
19.04.2006	<1	18	<1

4.2.2 Dieselkraftstoff

Für den verwendeten Dieselkraftstoff wurde die Elementarzusammensetzung analysiert. Die Ergebnisse sind Tabelle 6 zu entnehmen. Die Qualität des für die Emissionsmessungen verwendeten Dieselkraftstoffs ist in Tabelle 7 aufgeführt. Über die Anforderungen der DIN EN 590 hinaus wird ein Elementscreening mittels ICP-OES durchgeführt. Die Ergebnisse sind Tabelle 8 zu entnehmen.

Tabelle 6: Ergebnisse der Elementaranalyse des für die Emissionsmessungen verwendeten Dieselkraftstoffs

Verwendungsdatum	Kohlenstoff in Masse-%			Stickstoff in mg/kg
24.05.2007	86,0	13,9	<0,5	20
07.03 - 27.03.2007	85,6	13,6	<0,5	28
22.03. – 19.04.2006	86,1	13,4	0,4	54

Anforderungen der DIN EN 590 und Qualität des für die Emissionsmessungen Tabelle 7: verwendeten Dieselkraftstoffs

Dichte (15°C) in kg/m³ DIN EN ISO 12185 Flammpunkt in °C DIN EN ISO 2719 Cetamindex DIN EN ISO 2719 Cetamindex DIN EN ISO 12185 Cetamzahl PP 498 Kin. Viskosität (40°C) in mm²k DIN EN ISO 10370 CFPP in °C DIN EN ISO 10370 CFPP in °C DIN EN ISO 2084 Koksrückstand in Masse-% (10 % Destillationsrückstand) DIN EN ISO 2084 Gesamtverschmutzung in mg/kg DIN EN ISO 20884 Gesamtverschmutzung in mg/kg DIN EN ISO 20884 Gesamtverschmutzung in mg/kg DIN EN ISO 20860 Oxidationsstabilität in g/m³ DIN EN ISO 2160 Oxidationsstabilität in g/m³ DIN EN ISO 12205 HFRR (Lubricity) in µm DIN EN ISO 12205 HFRR (Lubricity) in µm DIN EN ISO 12205 UN EN ISO 12205 HFRR (Lubricity) in µm DIN EN ISO 12305 UN EN ISO 1237 Fettsäuremethylestergehalt in Volumen-% DIN EN ISO 3405 DIN EN ISO 3405 Destillation % (V/V) aufgefangen bei 350 °C in Volumen-% DIN EN ISO 3405 Destillation % (V/V) aufgefangen bei 350 °C in Volumen-% DIN EN ISO 3405 Destillation % (V/V) aufgefangen bei 350 °C in Volumen-% DIN EN ISO 3405	DIN EN ISO 3405 Destillation 95 % (V/V) aufgefangen bei in °C DIN EN ISO 3405
Anforderungen der DIN EN 590	
	in. max. 360
Dieselkraftstoffqualität bei den Emissionsmessungen am 24.05.2007 (1064 Bh)	•
	95 349
Dieselkraftstoffqualität bei den Emissionsmessungen von 07.03.2007 (863 Bh) bis 27.03.2007 (875 Bh)	
839,8 72 51,5 52,4 2,75 <0,01 -26 <1 2 1 n.b. 232 3,5 < 0,001 29 4,2 35 9	94 353
Dieselkraftstoffqualität bei den Emissionsmessungen vom 22.03.2006 (245 Bh) bis 19.04.2006 (265 Bh)	•
836,9 61 50,2 53,0 2,52 0,02 -18 6,9 n.b. 1 4 205 3,3 0,001 27 4,8 42 9	

¹⁾ für schwefelfreien Dieselkraftstoff

²⁾ abhängig von der Jahreszeit n.b.: nicht bestimmt

Verwendungsdatum Aluminium **Silizium** weitere Elemente in mg/kg in mg/kg in mg/kg 24.05.2007 3 9 <1 07.03 - 27.03.20073 11 <1 22.03. - 19.04.2006 <1 17 <1

Tabelle 8: Ergebnisse des Elementscreenings mittels ICP-OES des für die Emissionsmessung verwendeten Dieselkraftstoffs

4.3 Prüfstand

Die Abgasemissionsmessungen wurden am Abgasprüfstand des Technologie- und Förderzentrums (TFZ) durchgeführt. Der Prüfstand ist konzipiert für die Messung von gasförmigen Abgaskomponenten und Partikelemissionen von Traktormotoren im eingebauten Zustand. Die Emissionsmessungen am Prüfstand erfolgen in Anlehnung an die Richtlinie 2000/25/EG bzw. 97/68/EG. Darüber hinaus besteht die Möglichkeit, auch nicht in der Richtlinie genannte Emissionskomponenten mit alternativen Messverfahren zu erfassen.

Im Folgenden werden der Aufbau des Prüfstands und die technischen Merkmale der einzelnen Prüfstandsbestandteile beschrieben.

4.3.1 Aufbau

In Abbildung 3 ist der schematische Aufbau des Abgasemissionsprüfstands am Technologie- und Förderzentrum dargestellt. Im Wesentlichen besteht der Prüfstand aus einer Zapfwellenbremse und einer Abgasmessstrecke. An der Abgasmessstrecke ist die Messung der gasförmigen Komponenten und der Partikelemissionen sowohl im verdünnten als auch im unverdünnten Abgas möglich. Die Daten werden mit Hilfe eines Datenerfassungssystems (LabVIEWTM) aufgezeichnet.

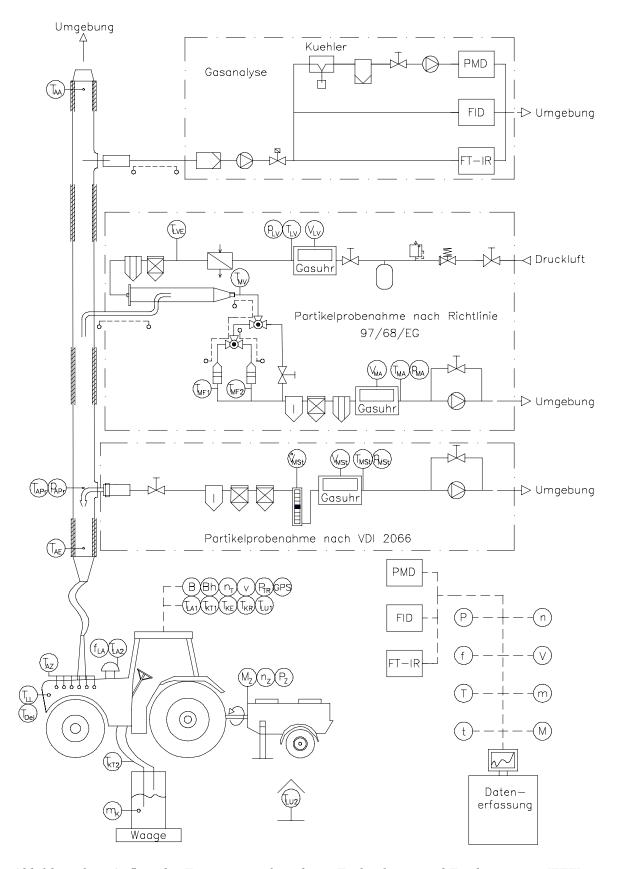


Abbildung 3: Aufbau des Emissionsprüfstands am Technologie- und Förderzentrum (TFZ)

4.3.2 Erfassung der Randbedingungen

Zur Erfassung der Randbedingungen bei den Emissionsmessungen werden wichtige Betriebszustände und Umgebungsbedingungen kontinuierlich aufgezeichnet. Tabelle 9 zeigt eine Übersicht über die während der Emissionsmessungen erfassten Messgrößen.

Tabelle 9: Erfasste Messgrößen mit Messstellen und Messgrößen-Aufnehmer am Abgasprüfstand des Technologie- und Förderzentrums (TFZ)

Messgrößen	Kürzel	Messstelle	Messgrößen-Aufnehmer
		Umgebung	
Temperatur Umgebungsluft	T_{LU1}	Kabinendach außen bei Rundumlampe	PT100 Thermofühler
Temperatur Umgebungsluft	T_{LU2}	Raumfühler neben Kabine auf Höhe Rücklicht	Mantel-Thermoelement Typ K
Zeit	t		
		Traktor	
Betriebsstunden	Bh		CAN-Bus Schlepper
GPS-Position	GPS	Traktor	GPS-Empfänger
Fahrgeschwindigkeit Schlepper	v	Getriebe	CAN-Bus Schlepper
Betrieb Düsenheizung 70 °C	DH1	Relais Düsenheizung	Voltmeter
Betrieb Düsenheizung 100°C	DH2	Relais Düsenheizung	Voltmeter
Temperatur Ansaugluft	T _{LA1}	Einlassgitter im Ansaug- luftkanal	Mantel-Thermoelement Typ K
Temperatur Ansaugluft	T _{LA2}	Einlassgitter im Ansaug- luftkanal	Datenlogger Wöhler DC2000Pro
Feuchte Ansaugluft	f_{LA}	Einlassgitter im Ansaug- luftkanal	Datenlogger Wöhler DC2000Pro
Temperatur Ladeluft	T_{LL}	nach Ladeluftkühler	Mantel-Thermoelement Typ K
Ladedruck	$p_{\rm LL}$	nach Abgasturbolader	CAN-Bus Schlepper
Temperatur Kraftstoff	T_{KT1}	Kraftstoffvorlaufleitung direkt nach Tank	PT100 Thermofühler
Temperatur Kraftstoff	T _{KT2}	Kraftstoffvorlaufleitung aus Behälter Versuchskraftstoff	PT100 Thermofühler
Temperatur Kraftstoff	T _{KE} Anlegefühler an Einspritz- Mantel-T		Mantel-Thermoelement Typ K
Temperatur Kraftstoff	T_{KR}	Rücklauf direkt nach Zylin- derkopf (vor Kraftstoffküh- ler)	CAN-Bus Schlepper
Kraftstoffverbrauch	В	berechneter Wert	CAN-Bus Schlepper

Tabelle 9: Erfasste Messgrößen mit Messstellen und Messgrößen-Aufnehmer am Abgasprüfstand des Technologie- und Förderzentrums (TFZ) (Fortsetzung)

Messgrößen	Kürzel	Messstelle	Messgrößen-Aufnehmer
	_	Traktor	
Temperatur Abgas (einzelne Zylinder)	T _{AZ1-6}	jeweils direkt nach Ausgang Zylinderkopf im Krümmer	Mantel-Thermoelement Typ K
Temperatur Motoröl	T_{Oel}	im Nebenstrom vor Nebenstromölfilter	Mantel-Thermoelement Typ K
Temperatur Kühlwasser	T_{W}	Kühlwasseraustritt aus Zy- linderkopf	CAN-Bus Schlepper
Motordrehzahl	n _{T1}	Kurbelwelle	CAN-Bus Schlepper
Motordrehzahl	n_{T2}	Zapfwelle	Eggers Wirbelstrombremse PT 301 MES (berechnet)
Last	P_{TR}	Gaspedalstellung	CAN-Bus Schlepper
Drehmoment	M_Z	Zapfwelle	Eggers Wirbelstrom- bremse PT 301 MES
Drehzahl	$n_{\rm Z}$	Zapfwelle	Eggers Wirbelstrom- bremse PT 301 MES
Leistung	P _Z	Berechnet aus Drehzahl und Drehmoment an der Zapf- welle	Eggers Wirbelstrombremse PT 301 MES
Masse Kraftstoff	m_{K}	Versuchskraftstoffbehälter auf Waage	Waage PESA WT BR 210/B3, 150 kg
		Abgasmessstrecke	
Temperatur Abgas einzelne Zylinder	T _{AZ1-6}	jeweils direkt nach Ausgang Zylinderkopf im Krümmer	Mantel-Thermoelement Typ K
Temperatur Abgas	T_{AE}	Eingang Abgasstrecke	Mantel-Thermoelement Typ K
Temperatur Abgas	T_{AA}	Ausgang Abgasstrecke	Mantel-Thermoelement Typ K
Verdünnungsluftvolumen	V_{LV}	vor Verdünnungstunnel	Balgengaszähler mit Impulszähler
Temperatur Verdünnungsluft	T_{LV}	direkt nach Balgengaszähler	PT100 Thermofühler
Druck Verdünnungsluft	p_{LV}	direkt nach Balgengaszähler	Drucktransmitter Althen HPSA-ADVDA
Temperatur Verdünnungsluft	T_{LVE}	vor Eingang Verdünnungs- tunnel	PT100 Thermofühler
Temperatur verdünntes Abgas (Messgas)	T_{MV}	Ausgang Verdünnungstun- nel	PT100 Thermofühler
Temperatur verdünntes Abgas (Messgas)	T _{MF1} / T _{MF2}	unmittelbar nach Planfilter- halter	PT100 Thermofühler

Tabelle 9: Erfasste Messgrößen mit Messstellen und Messgrößen-Aufnehmer am Abgasprüfstand des Technologie- und Förderzentrums (TFZ) (Fortsetzung)

Messgrößen	essgrößen Kürzel Messstelle		Messgrößen-Aufnehmer			
		Abgasmessstrecke				
Volumen verdünntes Abgas (Messgas)	V_{MA}	nach Planfilterhalter vor Absaugpumpe	Balgengaszähler mit Impulszähler			
Temperatur verdünntes Abgas (Messgas)	T_{MA}	Ausgang Messstrecke di- rekt nach Messgasvolu- menmessung	PT100 Thermofühler			
Druck verdünntes Abgas (Messgas)	p_{MA}	Ausgang Messstrecke di- rekt nach Messgasvolu- menmessung	Drucktransmitter Althen HPSA-ADVDA			
Staub-Probenahme VDI 2066						
Temperatur Abgas	T_{APr}	Abgasstrecke bei Prandtl- Rohr	Mantel-Thermoelement Typ K			
Dynamischer Druck	p_{APr}	Abgasstrecke an VDI 2066 Entnahmeöffnung	Prandtl-Rohr			
Messgasvolumen VDI2066	V_{MSt}	vor Absaugpumpe	Balgengaszähler			
Temperatur Messgas	T_{MSt}	vor Gasuhr VDI-Messung	Analoges Anzeigegerät			
Druck Messgas	P _{MSt}	vor Gasuhr VDI-Messung	Analoges Anzeigegerät			
Messgasvolumenstrom	\dot{V}_{MSt}	vor Gasuhr VDI-Messung	Schwebekörperdurch- flussmesser			

4.3.3 Bestimmung von Motorleistung, Motordrehzahl und Kraftstoffverbrauch

Die Bestimmung der Motorleistung und Motordrehzahl nach Richtlinie 2000/25/EG erfolgt an einem Motorenprüfstand direkt an der Kurbelwelle. Dazu ist es notwendig, den Motor aus dem Fahrzeug auszubauen. Da bei dem Forschungsvorhaben vor allem die Abgasemissionen von Traktormotoren, die in der Praxis in Betrieb sind, getestet werden sollen, ist eine Bestimmung der Motorleistung im ausgebauten Zustand nicht beabsichtigt. Daher sind Abweichungen zum Typprüfungsverfahren erforderlich. Am Prüfstand des Technologie- und Förderzentrums wird die Motorenleistung des Traktors P_T über die Zapfwellenleistung P_Z bestimmt, unter Berücksichtigung eines durchschnittlichen Übertragungsverlustes von 10 % [7]. Die Motordrehzahl n_T wird über die Zapfwellendrehzahl n_Z und das Übersetzungsverhältnis des Getriebes bestimmt.

Die Zapfwellenleistung P_Z wird über eine Wirbelstrombremse (EGGERS PT 301 MES, max. 340 kW, Auflösung 0,1 kW) durch Messung von Drehmoment M_Z und Drehzahl n_Z ermittelt.

Tabelle 10 gibt einen Überblick über die Abweichungen bei den Emissionsmessungen im Vergleich zur Typprüfung nach der Richtlinie 2000/25/EG.

Tabelle 10: Abweichungen zum Typprüfungsverfahren nach Richtlinie 97/68/EG

Vorgehen nach Richtlinie 97/68/EG	Vorgehen bei den Prüfstandsmessungen
	Bestimmung der Nutzleistung des Motors P _T über die Zapfwellenleistung P _Z bei einem angenommenen durchschnittlichen Übertragungsverlust von 10 % [7]
Messung der Drehzahl am Motorprüfstand direkt an der Kurbelwelle	Bestimmung der Motordrehzahl n_T über die Zapfwellendrehzahl n_Z

Der Kraftstoffverbrauch wird gravimetrisch mittels einer Waage (PESA WT BR 210/B3, max. 150 kg) erfasst. Dazu wird am Traktor das Kraftstoffsystem am Tank aufgetrennt und Kraftstoffvorlauf und -rücklauf in einen Versuchskraftstoffbehälter geleitet, dessen Gewicht über die Waage erfasst wird. Abbildung 4 zeigt den Aufbau zur Bestimmung des Kraftstoffverbrauchs.

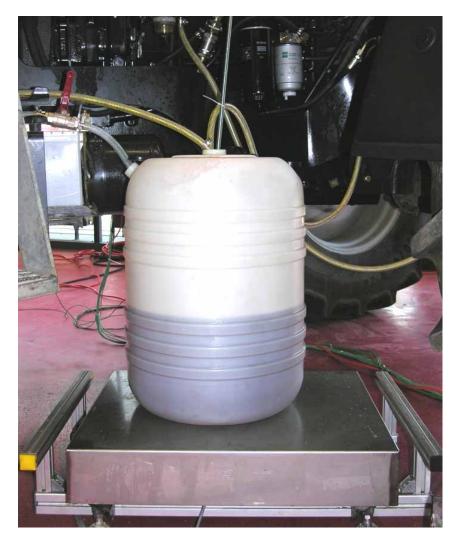


Abbildung 4: Aufbau zur Bestimmung des Kraftstoffverbrauchs mittels Wägung des Versuchskraftstoffbehälters

4.3.4 Gasanalyse

Eine Übersicht über die technischen Daten der Messgeräte zur Analyse der gasförmigen Abgasbestandteile gibt Tabelle 11. Alle Messwerte werden kontinuierlich in einem Abstand von maximal 20 Sekunden erfasst und mit Hilfe des Datenerfassungssystems (LabVIEWTM) aufgezeichnet.

Bei den Emissionsmessungen werden die gasförmigen Abgaskomponenten Kohlenstoffdioxid (CO_2), Wasser (H_2O), Kohlenstoffmonoxid (CO), Stickstoffmonoxid (CO), Sticksto

Messgröße	Messgerät/Hersteller	Messprinzip/ -verfahren	aktiver Messbereich	Prüfgas- konzentration 1)
CO_2	FT-IR Gasmet –4000 Fa. Ansyco	Fourier-transformierte Infrarotabsorption	0 – 25 Vol%	2 % CO ₂ in N ₂
H_2O	FT-IR Gasmet –4000 Fa. Ansyco	Fourier-transformierte Infrarotabsorption	0 – 30 Vol%	
СО	FT-IR Gasmet –4000 Fa. Ansyco	Fourier-transformierte Infrarotabsorption	0 – 15 000 ppm	0,9 % CO in N ₂
NO NO ₂ 3)	FT-IR Gasmet –4000 Fa. Ansyco	Fourier-transformierte Infrarotabsorption	0 – 2000 ppm 0 – 1500 ppm	900 ppm NO in N ₂
O_2	Sauerstoffanalysator PMA 100-L Fa. M&C Products	Paramagnetismus	0 – 100 Vol%	
$C_nH_m^{2)}$	Thermo-FID Fa. Mess-& Analysen- technik GmbH	Flammenionisation	$0 - 10\ 000\ ppm$ C_3H_8 -Äquivalent	80,7 ppm C ₃ H ₈ in N ₂

¹⁾ relative Genauigkeit des Prüfgases: ± 1 % (lt. Herstellerangabe)

NO_x = NO + NO₂

4.3.5 Partikelmassebestimmung

Am Prüfstand des Technologie- und Förderzentrums können die Partikelemissionen diskontinuierlich nach VDI 2066 im heißen Abgas und nach den Vorgaben der Richtlinie 97/68/EG bzw. ISO 8178 im verdünnten Abgas erfasst werden.

Bei der Messung nach **VDI 2066** Blatt 1 am Prüfstand wird aus dem Abgasstrom ein Teilgasstrom isokinetisch abgesaugt und die darin mitgeführten Partikel in einer außerhalb der Abgasmessstrecke befindlichen Abscheidevorrichtung (Out-Stack-Filtration) gesammelt. Zur Abscheidung dienen Quarz-Mikrofaserfilter (Munktell, MK 360, getempert, Durchmesser 45 mm) mit einem Abscheidegrad von 99,998 % und einer Penetration von <0,002 % Dioctylphtalat (DOP 0,3 μm). Damit werden auch die Anforderungen der Richtlinie 97/68/EG an den Abscheidegrad des Filtermaterials eingehalten. Als Filtergehäuse wird ein Planfilterkopf nach VDI 2066 verwendet. Im

²⁾ Summe der flüchtigen organischen Verbindungen; Messung im heißen Abgas

Anschluss an die Abscheidevorrichtung befindet sich die Absaugapparatur. Diese besteht aus einer Einheit zur Gastrocknung, den Geräten zur Ermittlung des Volumenstromes sowie des Gaszustandes und einer Saugpumpe. Mit Hilfe eines Schwebekörper-Durchflussmessgerätes wird der für die isokinetische Probenahme erforderliche Volumenstrom am Bypass der Pumpe eingestellt.

Bei der Messung nach Richtlinie **97/68/EG**, welche im Wesentlichen auf der ISO 8178 beruht, wird aus dem Abgasstrom ein Teilgasstrom entnommen. Der Teilgasstrom wird über ein auf 250 °C beheiztes Übertragungsrohr in den Verdünnungstunnel geleitet. Über die Zufuhr von Verdünnungsluft wird der verdünnte Abgasstrom unmittelbar über dem Filterhalter auf Temperaturen zwischen 42 °C und 52 °C gehalten. Die Verdünnungsluft wird aus dem Druckluftnetz entnommen und erfüllt die Druckluftklasse 1.4.1 nach ISO 8573. Das Verdünnungsluftvolumen wird über einen Balgengaszähler (Elster, Experimentiergaszähler trockene Bauart, Messgenauigkeit ± 2 %, Ablesegenauigkeit 0,1 l) erfasst. Die Verdünnungsluft wird über einen Wärmetauscher auf Temperaturen zwischen 20 °C und 30 °C konditioniert und anschließend über einen Aktivkohlefilter (Riegler, FA 33 K) und über einen Mikrofilter (Riegler, FM 33 K, Borosilikat-POM, Filterfeinheit 0,01μm, Wirkungsgrad 99,999 %) weiter aufbereitet.

Die Partikelabscheidung erfolgt in einem Filtergehäuse durch ein im Abstand von 17 mm hintereinander angeordnetes Filterpaar (Hauptfilter und Nachfilter). Zur Abscheidung dienen teflonbeschichtete Glasfaserfilter (Pall Life Sciences, EmfabTM Filters, TX40HI20WW, 44 mm Durchmesser) mit einem Abscheidegrad von 99,9 % Dioctylphtalat (DOP 0,3 μm).

Nach der Partikelabscheidung wird das verdünnte Abgas getrocknet und gefiltert, bevor das Volumen über einen Balgengaszähler (Elster, Experimentiergaszähler trockene Bauart, Messgenauigkeit ±2 %, Ablesegenauigkeit 0,1 l) erfasst wird. Alle Temperaturen, Drücke und Volumina werden kontinuierlich mit Hilfe des Datenerfassungssystems (LabVIEWTM) aufgezeichnet.

Zur Bestimmung der Gewichte der Filter wird für beide Probenahmeverfahren eine Analysenwaage mit einer Auflösung von 1 µg und einer Genauigkeit von 1,5 µg (Mettler-Toledo, Mikrowaage XP 56) verwendet. Die Filter werden vor der Auswägung zur Konditionierung mindestens 12 h in einem klimatisierten Raum bei 23 °C gelagert.

Eine davon abweichende Vorgehensweise bei der Rückwägung der beladenen Filter im Rahmen der Mutagenitätsuntersuchungen wird in Kapitel 4.4.3 beschrieben.

4.4 Durchführung der Emissionsmessungen

Die Emissionsmessungen erfolgen in Anlehnung an die EU-Richtlinie 2000/25/EG. Diese verweist bei den Anforderungen, Grenzwerten und Prüfverfahren auf die EU-Richtlinie 97/68/EG [2] [3]. Für Traktormotoren bis Abgasstufe IIIA findet der sogenannte Non-Road-Steady-Cycle (NRSC) Anwendung, welcher dem C1-Zyklus (8-Phasen-Zyklus) der ISO 8178-4 entspricht.

4.4.1 Vorbereitung des Traktors und des Prüfstands

Da sich der Traktor im täglichen Einsatz auf dem Feld befindet, muss dieser auf die Durchführung der Emissionsmessungen vorbereitet werden.

Vor Beginn einer Messkampagne werden folgende Maßnahmen durchgeführt:

- Erneuerung des Ansaugluftfilters
- Kontrolle und Reinigung des Kühlsystems
- Deaktivierung aller nicht benötigten Nebenverbraucher
- Durchführung eines Motorenöl- und Motorenölfilterwechsels (Ölsorte: esterbasisches Motorenöl Fuchs Plantomot 5W-40)
- Kontrolle und Erneuerung der weiteren Betriebsmittel je nach Bedarf
- Auftrennung des Kraftstoffsystems direkt am Tank und Verlegung von Kraftstoffvorlauf und –rücklauf in den Versuchskraftstoffbehälter

Während einer Messkampagne wird darüber hinaus bei jedem Kraftstoffwechsel das Kraftstoffsystem mit mindestens 10 l Versuchskraftstoff gespült und anschließend ein Kraftstofffilterwechsel durchgeführt.

Für die Emissionsmessungen zur Bestimmung der Mutagenität der Partikelemission wird im speziellen vor jedem Kraftstoffwechsel auch ein Motorenöl- und Motorenölfilterwechsel durchgeführt, um vergleichbare Bedingungen herzustellen. Für die Emissionsmessungen bei den Mutagenitätsuntersuchungen mit Dieselkraftstoff werden wesentliche Teile der Umrüstung, nämlich die Beheizung der Einspritzdüsen und die Kraftstoffvorwärmung, deaktiviert, um den Motor annähernd in den Ursprungszustand zurückzuversetzen. Es wird jedoch ausdrücklich darauf hingewiesen, dass der Motor bei den Messungen nicht vollständig in den Ursprungszustand vor der Umrüstung zurückversetzt werden kann.

4.4.2 NRSC-Prüfzyklus

Vor Beginn der eigentlichen Abgasmessungen wird der Leistungs- und Drehmomentverlauf über die Drehzahl aufgenommen, um die Last- und Drehzahleinstellung für die acht Phasen zu ermitteln. Bei Durchführung einer Messung gemäß dem NRSC-Prüfzyklus nach Richtlinie 97/68/EG werden die Prüfphasen der Reihe nach von eins bis acht durchlaufen. Anhand der kontinuierlich gemessenen Abgastemperaturen, Motortemperaturen und der Schadstoffkonzentrationen im Abgas wird die Motorstabilisierung für jede einzelne Prüfphase abgewartet. Erst im Anschluss an die Motorstabilisierung bzw. erst nach mindestens zehn Minuten wird mit der Partikelprobenahme begonnen. Zur Auswertung der gasförmigen Emissionen werden die Messwerte der letzten sechs Minuten vor Beendigung der Partikelprobennahme herangezogen.

Die Ergebnisse der Schadstoff- und Leistungsmessungen aus den einzelnen Prüfphasen fließen mit unterschiedlicher Wichtung in die Berechnung der spezifischen Emissionen ein [3]. Abbildung 5 zeigt die Lage der Prüfphasen im Leistungs-/Drehmomentdiagramm. Tabelle 12 gibt einen Überblick zu den einzelnen Prüfphasen.

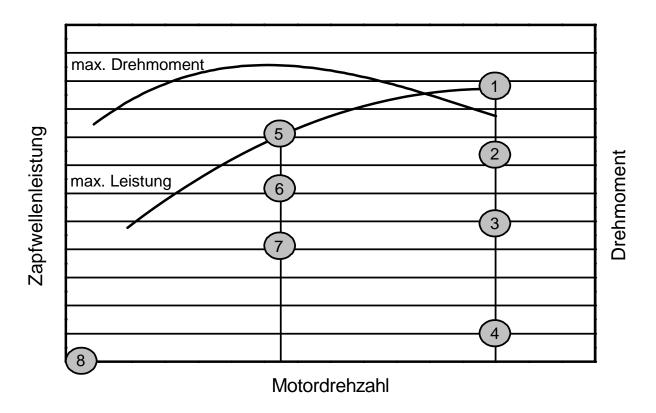


Abbildung 5: Lage der Prüfphasen im Leistungs-/Drehmomentdiagramm

Tabelle 12: Übersicht zu den acht Prüfphasen nach Richtlinie 97/68/EG [3]

Phase	1	2	3	4	5	6	7	8
Last in %	100	75	50	10	100	75	50	0
Drehzahl		Nennd	rehzahl		Zwis	Leerlauf		
Wichtungsfaktor	0,15	0,15	0,15	0,1	0,1	0,1	0,1	0,15

4.4.3 Partikelprobenahme für die Mutagenitätstests

Zur Bestimmung der mutagenen Wirkung von Partikeln aus rapsöl- bzw. dieselkraftstoffbetriebenen Dieselmotoren werden die Partikel auf teflonbeschichteten Glasfaserfiltern (Pall Life Sciences, EmfabTM Filters, TX40HI20WW, 44 mm Durchmesser) gesammelt.

Um Verfälschungen der Untersuchungsergebnisse bei den Mutagenitätsmessungen zu vermeiden, werden die Filter, sowie alle Flächen, mit denen die Filter in Kontakt kommen, mit Dichlormethan (>99,8 %, für die Rückstandsanalyse) gereinigt.

Nach folgender Vorgehensweise werden die Filter vorbereitet:

- Waschung der Petrischalen zur Filteraufbewahrung mit Dichlormethan
- Lagerung der Petrischalen bis zur weiteren Verwendung in Exsikkatoren
- Waschung der einzelnen Filter mit Dichlormethan
- Aufbewahrung der Filter in den gereinigten Petrischalen in Exsikkatoren
- Entnahme der Petrischalen aus den Exsikkatoren mindestens vier Stunden vor Auswiegung der Filter; Temperatur- und Feuchtekonditionierung in einem klimatisierten Raum
- Waschung des Filterhalters der Analysenwaage mit Dichlormethan
- Wägung der Filter
- Aufbewahrung der Filter in geschlossenen Petrischalen im klimatisierten Raum bis zur Durchführung der Partikelprobenahme

Die Partikelprobenahme erfolgt in Anlehnung an die Richtlinie 97/68/EG aus dem verdünnten Abgas. Die unterschiedliche Wichtung der einzelnen Prüfphasen erfolgt in Übereinstimmung mit den Angaben in Anhang III 3.7.5. nach der Probenahmedauer [3]. Tabelle 13 zeigt eine Übersicht über die Dauer der Partikelprobenahme.

Tabelle 13: Übersicht zur Dauer der Partikelprobenahme bei den einzelnen Prüfphasen des 8-Phasen-Zyklus in Anlehnung an die Richtlinie 97/68/EG

Phase	1	2	3	4	5	6	7	8
Last in %	100	75	50	10	100	75	50	0
Drehzahl		Nennd	rehzahl		Zwi	schendreh	ızahl	Leerlauf
Probenahmezeit in s	900	900	900	600	600	600	600	900

Um die Anforderungen des maximalen Druckabfalls über das Filterpaar von 25.000 Pa nach Richtlinie 97/68/EG Anhang III Anlage 1 zu erfüllen, wird für jede einzelne Prüfphase ein neues Filterpaar beladen. Dadurch können Beschädigungen des Filtermaterials aufgrund erhöhter Druckverluste über die Filter ausgeschlossen und gleichzeitig die für die Untersuchungen notwendigen Partikelmengen von insgesamt ca. 30 mg pro Prüfzyklus gesammelt werden. Alle während eines Prüfzyklus beladenen Filterpaare werden als eine Gesamtprobe hinsichtlich der mutagenen Wirkung untersucht.

Zusätzlich zu den Gesamtproben des 8-Phasen-Zyklus wird die Phase 8 (Leerlauf) gesondert betrachtet. Hierzu verbleibt der Traktor nach Durchlauf des letzten Prüfzyklus im Leerlauf und es werden vier weitere Filterpaare mit Partikeln beladen. Die Partikelprobenahmezeit beträgt je Filterpaar 900 s. Für die Partikelproben aus dem Betrieb mit Rapsölkraftstoff zur Untersuchung der mutagenen Wirkung werden das erste und das dritte Filterpaar, bzw. das zweite und das vierte

Filterpaar zusammen untersucht, um die notwendige Partikelmasse von ca. 30 mg je Probe zu erreichen. Für den Betrieb mit Dieselkraftstoff werden, aufgrund der geringeren Partikelmasse während der Probenahmezeit, alle vier Filterpaare als eine Probe hinsichtlich der mutagenen Wirkung untersucht.

Das Bestücken der Filterhalter bzw. die Partikelprobenahme erfolgt bei jeder Beladung eines Filterpaares nach folgender Vorgehensweise:

- Waschung des Wägegitters an der Filterwaage mit Dichlormethan
- Waschung des Filterhalters und der Dichtungen des Filterhalters mit Dichlormethan (Abbildung 6)
- Einlegen der Filter in die Filterhalter
- Einlegen des bestückten Filterhalters in die Partikelprobenahmevorrichtung am Verdünnungstunnel
- Durchführung der Partikelprobenahme
- Entfernen des beladenen Filterhalters (Abbildung 6)
- Auswägung der Filter mit der Filterwaage
- Lagerung der Filter im Kühlraum bei 6 bis 10 °C

Abbildung 6: Waschung der Filterhalter mit Dichlormethan (links) und Entfernung des beladenen Filterhalters aus der Partikelprobenahmevorrichtung (rechts)

Am Ende des Versuchstages werden die zuvor im Kühlraum bei 5 °C gelagerten Filter bei –20 °C eingelagert, bis sie am Ende des Versuchsprogramms in tiefgekühltem Zustand zum Analyselabor transportiert werden.

Abweichend zu der in Kapitel 4.3.5 beschriebenen Filterkonditionierung werden die Filter bereits nach max. fünf Minuten ausgewogen, um diese für die Mutagenitätsbestimmung in möglichst unverfälschtem beladenen Zustand zu erhalten. Um zu ermitteln, in wie weit sich hier Differenzen beim Filtergewicht zur üblichen Vorgehensweise ergeben, wurden Vorversuche durchgeführt. Bei den Vorversuchen wurde der Deutz-Fahr Agrotron TTV 1160 mit Rapsölkraftstoff betrieben und

die Partikelprobenahme entsprechend der beschriebenen Vorgehensweise durchgeführt. Es wurde festgestellt, dass die beladenen Filter nach einer Lagerdauer von 13 bis 20 h im klimatisierten Raum ein um durchschnittlich 1,0 % geringeres Gewicht aufwiesen, als die direkt nach der Probenahme ausgewogenen Filter. Die maximale Abweichung bei einer Einzelwägung betrug für ein Filterpaar, beladen in Phase 7, max. 4,8 %. Somit zeigt sich, dass auch ohne Filterkonditionierung eine hinreichend genaue Filterwägung möglich ist. Die Ergebnisse der Vorversuche sind aus Tabelle 14 zu entnehmen.

Tabelle 14: Ergebnisse der Vorversuche zur Ermittlung des Einflusses der Filterkonditionierung auf das Filtergewicht

Phase	1	2	3	4	5	6	7	8
Last in %	100	75	50	10	100	75	50	0
Drehzahl		Nennd	rehzahl		Zwischendrehzahl			Leerlauf
Probenahmezeit in s	900	900	900	600	600	600	600	900
Wägung 1 in mg direkt nach Probenahme	1,414	1,863	1,145	1,751	1,155	1,77	2,681	14,294
Wägung 2 in mg	1,419	1,863	1,114	1,727	1,140	1,760	2,559	14,268
Zeit zw. Wägung 1 u. 2 in h	19,5	18,0	17,5	16,5	16,0	15,0	14,5	13,0
Differenz zu Wägung 1	0,4%	0,0%	-2,8%	-1,4%	-1,3%	-0,6%	-4,8%	-0,2%
Wägung 3 in mg	1,418	1,872	1,122	1,740	1,163	1,783	2,576	14,288
Zeit zw. Wägung 1 u. 3 in h	20,0	18,5	18,0	17,0	16,5	15,5	15,0	13,5
Differenz zu Wägung 1	0,3%	0,5%	-2,0%	-0,6%	0,7%	0,7%	-4,1%	0,0%

4.5 Versuchsvarianten

Im Rahmen der Untersuchungen zur Mutagenität der Partikelemission werden insgesamt acht Versuchsvarianten ausgewählt. Abbildung 7 zeigt eine Übersicht über alle Versuchsvarianten.

Die Emissionsmessungen werden sowohl mit Rapsölkraftstoff als auch mit Dieselkraftstoff durchgeführt, wobei der Motor durch die Umrüstung nach dem Ein-Tank-System der Firma Hausmann auf den Rapsölkraftstoffbetrieb optimiert ist. Beim Betrieb des Traktors mit Dieselkraftstoff werden die wesentlichen Teile der Umrüstung, die Düsenstockheizung und die Kraftstoffvorwärmung, deaktiviert, um den Traktor so annähernd in den Ausgangszustand vor der Umrüstung zurückzuversetzen.

Der Prüfzyklus wird für jeden Kraftstoff zweimal durchlaufen, so dass für jeden Kraftstoff zwei Partikelproben für die Mutagenitätsuntersuchungen bereitgestellt werden können.

Die Prüfphase 8 (Leerlauf) wird gesondert betrachtet, da dieser Betriebszustand hinsichtlich des Kontakts mit dem Abgas eine besondere Relevanz aufweist. Für die Untersuchungen beim Betrieb

des Traktors mit Rapsölkraftstoff werden zwei Partikelproben genommen und untersucht, beim Betrieb des Traktors mit Dieselkraftstoff eine Partikelprobe.

Darüber hinaus wird eine Blindprobe (Blank) hergestellt, um Kontaminationen mit mutagenen Substanzen beim Versuchsablauf feststellen zu können. Mit der Blindprobe wird nach der beschriebenen Vorgehensweise verfahren, mit dem Unterschied, dass die Filter im Filterhalter nicht mit Abgas beaufschlagt werden.

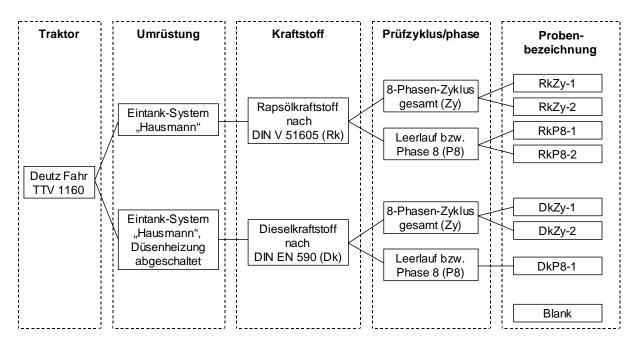


Abbildung 7: Schematische Darstellung der Versuchsvarianten für die Emissionsmessungen zur Bestimmung der mutagenen Wirkung von Partikeln

4.6 Auswertung

Die Auswertung und Angabe der Ergebnisse der Emissionsmessungen erfolgt im Wesentlichen nach Richtlinie 97/68/EG. Da die Verwendung von Rapsölkraftstoff als Prüfkraftstoff nicht vorgesehen ist und aufgrund der Anwendung alternativer Messmethoden am Prüfstand des TFZ, sind zum Teil alternative Berechnungsmethoden anzuwenden. Die von der Richtlinie abweichenden Berechnungsmethoden werden im Folgenden beschrieben.

Berechnung des Abgasmassenstromes

Nach Anhang III Anlage 1 Abschnitt 1.2.5 kann der Abgasmassenstrom über die Messung des Luftdurchsatzes und des Luft-Kraftstoff-Verhältnisses berechnet werden. Abweichend davon wird für die Bestimmung des Abgasmassenstromes je Prüfphase am Prüfstand des Technologie- und Förderzentrums (TFZ) anstelle des Luftdurchsatzes der Kraftstoffdurchsatz herangezogen.

Der Abgasmassenstrom berechnet sich nach folgender Formel:

$$G_{EXHW} = G_{FUEL} \cdot \left(1 + \lambda \cdot \frac{A}{F_{St}} \cdot \left(1 + \frac{H_a}{1000}\right)\right)$$

G_{EXHW} Abgasmassenstrom, feucht [kg/h]

G_{FUEL} Kraftstoffmassenstrom (Mittelwert je Prüfphase) [kg/h]

λ Relatives-Luft-Kraftstoff-Verhältnis [-]

A/F_{St} Stöchiometrisches Luft-Kraftstoff-Verhältnis [kg Luft/kg Kraftstoff]

*H*_a absolute Feuchtigkeit der Ansaugluft [g H₂O/kg Luft]

Das stöchiometrische Luft-Kraftstoff-Verhältnis beträgt für Dieselkraftstoff 14,5 kg Luft pro kg Kraftstoff [3]. Für Rapsölkraftstoff sind in der Richtlinie keine Angaben zum stöchiometrischen Luft-Kraftstoff-Verhältnis genannt, daher wird dieses anhand der Elementarzusammensetzung nach folgender Formel berechnet:

$$\frac{A}{F_{St}} = \left(\frac{\left(\frac{C}{12} + \frac{H}{4} + \frac{S}{32} - \frac{O}{32}\right) \cdot \frac{kmol O_2}{kg Raps\"{o}l}}{0.21 \cdot \frac{kmol O_2}{kmol Luft}}\right) \cdot M_{Air}$$

A/F_{St} Stöchiometrisches Luft-Kraftstoff-Verhältnis [kg Luft/kg Kraftstoff]

Gravimetrischer Kohlenstoffanteil im Rapsölkraftstoff [-]
 Gravimetrischer Wasserstoffanteil im Rapsölkraftstoff [-]
 Gravimetrischer Schwefelanteil im Rapsölkraftstoff [-]
 Gravimetrischer Sauerstoffanteil im Rapsölkraftstoff [-]

 M_{Air} molare Masse der Luft; 28,9626 [kg/kmol]

Für Rapsölkraftstoff ergibt sich ein stöchiometrisches Luft-Kraftstoff-Verhältnis von 12,49 kg Luft pro kg Kraftstoff.

Das relative Luft-Kraftstoff-Verhältnis λ kann für Dieselkraftstoff anhand der Richtlinie aus den Konzentrationen von Kohlenstoffdioxid (CO₂), Kohlenstoffmonoxid (CO) und Kohlenwasserstoff (HC) berechnet werden. Zur Berechnung des relativen Luft-Kraftstoff-Verhältnisses von Rapsölkraftstoff werden in der Richtlinie keine Angaben gemacht. Zur Bestimmung von λ für die Emissionsmessungen mit Rapsölkraftstoff findet eine zweimalige Kohlenstoffbilanz, unter Berücksichtigung einer unvollständigen Verbrennung (Kohlenwasserstoffe (HC) werden vernachlässigt), nach folgenden Formeln Anwendung:

$$\lambda = 1 + \frac{V_{mint}}{A/F_{St}} \cdot \left(\frac{CO_{2maxt}}{CO_{2t} + CO_{t}} - 1\right)$$

 λ Relatives-Luft-Kraftstoff-Verhältnis [-]

 $V_{min t}$ Mindestabgasvolumen bei vollständiger Verbrennung ohne Luftüberschuss, tro-

cken [m³ Abgas/kg Rapsölkraftstoff]

A/F_{St} Stöchiometrisches Luft-Kraftstoff-Verhältnis [kg Luft/kg Kraftstoff]

CO_{2max t} maximale CO₂-Konzentration im Abgas bei vollständiger Verbrennung ohne

Luftüberschuss, trocken [m³ CO₂/m³ Abgas]

CO₂ t CO₂-Konzentration im Abgas, trocken [m³ CO₂/m³ Abgas] CO_t CO-Konzentration im Abgas, trocken [m³ CO/m³ Abgas]

$$V_{\min t} = \frac{C}{12} \cdot \frac{kmol \, CO_2}{kg \, Raps\"{o}l} \cdot V_{mnCO_2} + \frac{S}{32} \cdot \frac{kmol \, SO_2}{kg \, Raps\"{o}l} \cdot V_{mnSO_2} + 0,79 \cdot \frac{A / F_{St}}{\rho_{Luft \, n}} \cdot V_{mnN_2}$$

V_{min t} Mindestabgasvolumen bei vollständiger Verbrennung ohne Luftüberschuss, tro-

cken [m³ Abgas/kg Rapsölkraftstoff]

C Gravimetrischer Kohlenstoffanteil im Rapsölkraftstoff [-]
S Gravimetrischer Schwefelanteil im Rapsölkraftstoff [-]

 V_{mnCO_2} Molares Normvolumen CO₂; 22,264 [m³/kmol] V_{mnSO_2} Molares Normvolumen SO₂; 21,876 [m³/kmol] V_{mnN_2} Molares Normvolumen N₂; 22,403 [m³/kmol]

A/F_{St} Stöchiometrisches Luft-Kraftstoff-Verhältnis [kg Luft/kg Kraftstoff]

 $\rho_{Luft,n}$ Normdichte von Luft, trocken; 1,293 [kg/m³]

$$CO_{2\text{max }t} = \frac{\frac{C}{12} \cdot \frac{kmol CO_2}{kg Raps\"{o}l} \cdot V_{mnCO_2}}{V_{min t}}$$

CO_{2max t} maximale CO₂-Konzentration im Abgas bei vollständiger Verbrennung ohne

Luftüberschuss, trocken [m³ CO₂/m³ Abgas]

C Gravimetrischer Kohlenstoffanteil im Rapsölkraftstoff [-]

V_{mnCO2} Molares Normvolumen CO₂; 22,264 [m³/kmol]

 $V_{min t}$ Mindestabgasvolumen bei vollständiger Verbrennung ohne Luftüberschuss, tro-

cken [m³ Abgas/kg Rapsölkraftstoff]

Umrechnung der gasförmigen Abgaskomponenten CO und NO_X vom trockenen in den feuchten Bezugszustand

Die gasförmigen Abgaskomponenten CO und NO_X werden bezogen auf das trockene Abgas gemessen. Die Umrechnung erfolgt nicht anhand der für Dieselkraftstoff spezifischen Umrechnung nach Richtlinie mit Hilfe des CO und CO₂ Gehaltes. Durch die zusätzliche Messung des Wassergehaltes im Abgas kann die Umrechnung brennstoffunabhängig anhand folgender Formel durchgeführt werden:

$$X_f = \frac{X_t \cdot \left(100 - H_2O\right)}{100}$$

 X_f Konzentration der Abgaskomponente X bezogen auf feuchtes Abgas [m³/m³] X_f Konzentration der Abgaskomponente X bezogen auf trockenes Abgas [m³/m³] H_2O Wassergehalt des Abgases [Vol.-%]

Alle weiteren Berechnungen werden nach den Vorgaben der Richtlinie 97/68/EG durchgeführt.

4.7 Untersuchung der Abgaspartikel

Die Proben der Abgaspartikel wurden am bifa Umweltinstitut in Augsburg hinsichtlich der mutagenen Wirkung, des Gehaltes an polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und des Gehaltes an Nitro-PAK untersucht. Im Folgenden werden die Probenaufbereitung und Durchführung der Analysen beschrieben.

4.7.1 Untersuchung zur Mutagenität

4.7.1.1 Probenaufbereitung

Die Filter einer Probe werden in 150 - 200 ml Dichlormethan (Geyer, BAKER ULTRA RESI-ANALYZED) im Soxhlet über 12 h extrahiert ($T_{Heizbad} = 70$ °C; $T_{K\"uhler} = 4$ °C). Anschließend wird der Extrakt in einen Glaskolben überführt. Alle verwendeten Geräte (z. B. Glaskolben, Messkolben) Materialien (z. B. Siedeperlen, Siedestein, Pinzetten) und Arbeitsflächen, die in direkten Kontakt zu den Proben kommen, werden mit Dichlormethan vorgereinigt.

Vor dem Eindampfen im Rotationsverdampfer werden aus dem Extrakt 10 % als Rückstellprobe für chemische Analysen entnommen.

Der restliche Extrakt wird im Rotationsverdampfer ($T_{Wasserbad} = 54$ °C; $T_{K\"uhler} = 4$ °C) auf ca. 5 bis 10 ml eingeengt. Das übrige Dichlormethan wird dann mit hochreinem Stickstoff abgeblasen. Die Menge an R\"uckstand, die im Glaskolben zur\"uckbleibt, wies bei den Untersuchungen eine ölige Konsistenz auf und war bei allen Proben – außer der Blindprobe – sichtbar. Die einzelnen Extrakte unterschieden sich hinsichtlich ihrer Farbe nicht signifikant.

Der Rückstand wird in 5000 µl hochreinem Dimethylsulfoxid (Merck, Qualitätsstufe pro analysi) rückgelöst und in dieser Form im Ames-Test eingesetzt.

4.7.1.2 Ames-Test

Im Ames-Test wird die mutagene Wirkung der Extrakte mit Hilfe von Bakterien bestimmt. Testorganismen sind die Mutantenstämme TA98 und TA100 von *Salmonella typhimurium* LT2 (His-). Diese sind nicht mehr in der Lage, die lebenswichtige Aminosäure Histidin selbst herzustellen und können so in einem histidinfreien Medium nur dann wachsen, wenn sie durch den Einfluss von mutagenen Substanzen die Fähigkeit zur Bildung von Histidin wiedererlangen (Rückmutation).

Mit den eingesetzten Stämmen werden Punktmutationen erfasst. Zwei Stämme kommen deshalb zum Einsatz, da bei Punktmutationen zwei Klassen unterschieden werden müssen – Basenpaarsubstitutionen (Nachweis mit TA100) und Rasterschubmutationen (Nachweis mit TA98).

Die Anzahl der Rückmutationen (Revertanten) ist ein Maß für die Mutagenität. Durch Zugabe von Rattenleberextrakt (S9-Mix) können auch Substanzen erfasst werden, die erst nach einer metabolischen Aktivierung im Säugetierorganismus mutagen sind.

Obwohl sich die Struktur des bakteriellen "Chromosoms" sehr stark von der viel komplexeren Struktur der Chromosomen von Säugerzellen unterscheidet und der Ames-Test somit nicht bei allen chemischen Verbindungsklassen eine gute Korrelation zwischen Mutagenität und Kanzerogenität aufweist, wird doch mit einer Sensitivität von annähernd 83 % ein kanzerogenes Potenzial erkannt.

4.7.1.3 Anzucht der Salmonellen

Die Salmonella-Mutantenstämme TA98 und TA100 werden am Tag vor dem Test von einer Master-Platte in Nährbouillon mit 3,15 % Ampicillin überimpft und über Nacht bei 37 °C angezogen. Nach etwa 14 h Kultivierung bei 37 °C werden die Teststämme am Morgen des Testtages nochmals in Ampicillin-Nährbouillon überimpft und 3 h bei 37 °C kultiviert, um sicherzustellen, dass sich die Salmonellen in der exponentiellen Wachstumsphase befinden.

4.7.1.4 Testansatz

Gemäß OECD-Guideline 471 (*Salmonella typhimurium*, Reverse Mutation Assay) wird der Ames-Test in Anlehnung an das Protokoll von MARON und AMES (1983) [9] durchgeführt.

Vom jeweiligen Probenextrakt werden zunächst durch Verdünnung mit hochreinem Dimethylsulfoxid (DMSO) insgesamt sechs Konzentrationsstufen (3,13 %; 6,25 %; 12,5 %; 25 %; 50 %; 100 %) hergestellt.

In einer ersten Testreihe werden jeweils $100~\mu l$ Probenextrakt bzw. Extraktverdünnung mit $100~\mu l$ frischer Bakterienkultur ($\sim 10^9~$ Zellen pro ml), $500~\mu l$ Natriumhydrogenphosphat-Puffer und $2000~\mu l$ Softagar als Topagar auf einer Petrischale mit histidinfreiem Minimalmedium inkubiert. Der Softagar enthält gemäß der Testvorschrift auch eine geringe Menge Histidin, um den Salmonellen einige wenige Zellteilungen zu ermöglichen. Hintergrund ist, dass viele Mutagene erst während einer Wachstumsphase eine Wirkung erzielen können. In einer zweiten Testreihe wird der Topagar zusätzlich mit $500~\mu l$ 4 %-igem S9-Mix versetzt. Abbildung 8 zeigt schematisch die Vorgehensweise beim Ames-Test.

Nach 48 bis max. 72 h Stunden Inkubation bei 37 °C (bei Vorliegen auswertbarer Koloniebilder) werden die Kolonien gezählt, die durch reverse Mutation zum Wildtyp auf den Platten wachsen können. Durch den Vergleich mit den Negativ-Kontrollen (dotiert mit jeweils 100 μl hochreinem DMSO) wird der Anteil an Revertanten bestimmt, der nicht spontan auftritt, sondern durch die Testsubstanzen verursacht wird.

Als Positivkontrollen kommen die Mutagene Methylmethansulfonat und 3-Nitrobenzanthron (im Test ohne metabolische Aktivierung durch S9-Mix) bzw. 2-Aminofluoren (im Test mit S9-Mix) zum Einsatz.

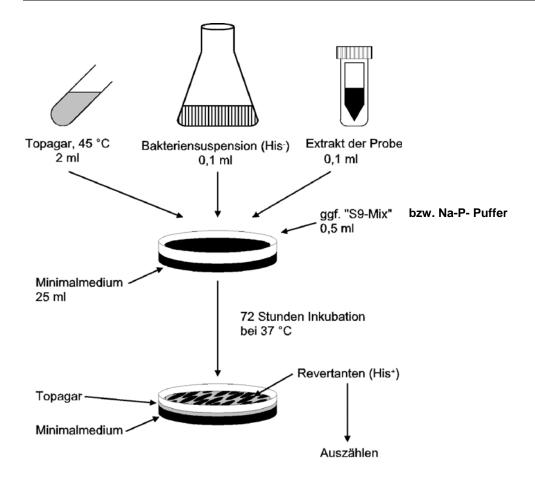


Abbildung 8: Schematische Darstellung des Salmonella-Mutagenitätstests (Ames-Test)

4.7.1.5 Auswertung

Bei der Prüfung der Mutagenität von Reinstoffen ist es möglich, im Testansatz nahezu beliebig hohe Konzentrationen der Testsubstanzen einzusetzen. Dies macht es möglich, in Vorversuchen jenen Konzentrationsbereich zu identifizieren, in dem mutagene Wirkungen nachweisbar werden. Für diesen Konzentrationsbereich werden bis zu sechs unterschiedliche Prüfkonzentrationen hergestellt, wobei der Konzentrationsbereich möglichst den unteren Wirkbereich sowie mehrere Prüfkonzentrationen im linearen Bereich der Dosis-Wirkungsbeziehung abdecken sollte. Häufig ergibt sich dieser lineare Bereich erst bei einer Auftragung des Wirkeffektes (hier die Anzahl der Revertanten) gegen den Logarithmus der Prüfkonzentration. Abbildung 9 zeigt die idealisierte Dosis-Wirkungsbeziehung mit dem für die Auswertung von Ames-Tests relevanten Anteil.

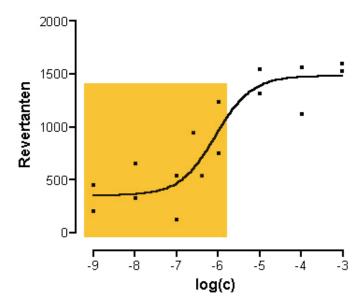


Abbildung 9: Idealisierte Dosis-Wirkungsbeziehung. Gekennzeichneter Bereich: Relevanter Anteil der Dosis-Wirkungsbeziehung für die Auswertung von Ames-Tests

Für die weitere Auswertung werden die Messwerte aus dem linearen Bereich der Dosis-Wirkungsbeziehung herangezogen. Hierzu wird von der ermittelten Anzahl der Revertanten die Anzahl der Spontanrevertanten subtrahiert und die Netto-Revertantenanzahl gegen den Logarithmus der Prüfkonzentrationen aufgetragen. Mit Hilfe einer linearen Regression kann dann rechnerisch die für eine bekannte Prüfkonzentration erwartete Revertantenanzahl abgeschätzt werden.

Gerade bei niedrigen Spontanrevertantenanzahlen (z. B. beim TA98-Stamm: 20 bis 50 Revertanten pro Platte) ist es in der Praxis aufgrund der Schwankung der Messwerte meist schwierig, den Beginn des linearen Bereichs der Dosis-Wirkungsbeziehung zu erkennen. Deshalb werden in diesem Fall erst Revertantenanzahlen als signifikant erhöht gewertet, wenn sie doppelt so hoch sind wie die Spontanrevertantenanzahl. Die Einhaltung dieser "Zweifachregel" ist jedoch bei hinreichend hohen Spontanrevertantenanzahlen, wie sie z. B. beim TA100-Stamm (75 bis 200 Revertanten pro Platte) beobachtet werden, nicht erforderlich [8] [11].

Im Vergleich zur Prüfung von Reinchemikalien ist die Auswertung der Prüfungen von Partikelextrakten erschwert. Einerseits stehen nur begrenzte Mengen der Partikelextrakte zur Verfügung, so dass nicht immer wünschenswert hohe Wirkbereiche der Partikelextraktbestandteile erreicht werden. Zudem können sich die Dosis-Wirkungsbeziehungen unterschiedlicher, mutagen wirkender Partikelextraktbestandteile so ergänzen, dass untypische summarische Dosis-Wirkungsbeziehungen erhalten werden.

4.7.2 Untersuchungen zum Gehalt an PAK und Nitro-PAK

Aliquote der im Ames-Test eingesetzten Dichlormethanextrakte der Diesel- und Rapsölpartikelproben wurden zusätzlich genutzt, um die Konzentrationen wichtiger polyzyklischer aromatischer Kohlenwasserstoffe (PAK) und ausgewählter Nitro-PAK zu bestimmen. Dabei wird ein Drittel der Rückstellproben auf PAK untersucht, zwei Drittel werden für die Bestimmung der Nitro-PAK verwendet.

Die Analyse der Nitro-PAK-Konzentrationen wurde vom Institut für Ökologische Chemie der GSF in Neuherberg durchgeführt. Die PAK-Konzentrationen wurden vom bifa Umweltinstitut in Anlehnung an die Bestimmung nach U.S. EPA method 8270 bestimmt.

Um die Nitro-PAK zu bestimmen, werden die Probenextrakte auf ca. 100 μ l eingeengt und in 1 ml Hexan aufgenommen. Zur Abtrennung interferierender Matrixkomponenten wird eine Festphasenextraktion an Kieselgel durchgeführt. Die Nitro-PAK enthaltende Fraktion wird bis zur Trocknung eingeengt und in 200 μ l Acetonitril aufgenommen. Diese Probe wird der HPLC-Analyse zugeführt.

5 Ergebnisse

5.1 Limitierte Abgaskomponenten

5.1.1 Gesamtbeobachtungszeitraum

Die Emissionsmessungen mit dem Deutz-Fahr Traktor fanden unmittelbar vor der Umrüstung mit Dieselkraftstoff (bei ca. 245 Betriebstunden) sowie wiederkehrend nach der Umrüstung mit Rapsöl- und Dieselkraftstoff statt. Nach 870 Bh wurden die Einspritzdüsen gegen neue gleicher Bauart ausgetauscht, um ggf. Auswirkungen auf die Abgasemissionen festzustellen. Bei den Untersuchungen zur Mutagenität von Abgaspartikeln bei 1064 Bh mit Dieselkraftstoff wurde die Düsenbeheizung und Kraftstoffvorwärmung abgeschaltet, da diese lediglich als Anpassungsmaßnahme bei der Umrüstung für den Einsatz von Rapsölkraftstoff dient.

Im Dieselbetrieb vor der Umrüstung erfüllte der Deutz-Fahr Traktor die Abgasstufe II (Abbildung 10, Abbildung 11, Abbildung 12, Abbildung 13). Die NO_X-Emissionen lagen exakt am Grenzwert. Bei der Umrüstung wurden die Einspritzdüsen ausgetauscht, der Einspritzdruck erhöht und die Kraftstofftemperatur über eine Düsenvorheizung angehoben, wodurch sich das Emissionsverhalten änderte. So wurden anschließend beim Betrieb mit Dieselkraftstoff ca. 50 % höhere Partikelmasse- und ca. 4 % höhere NO_X-Emissionen ermittelt.

Beim Betrieb mit Rapsölkraftstoff konnte eine weitere Erhöhung der NO_X-Emissionen festgestellt werden, so dass der Grenzwert um ca. 14 % überschritten wurde (Abbildung 11). Bei den Partikelmasseemissionen wurde hingegen ein Rückgang mit Rapsölkraftstoff beobachtet (Abbildung 13). Eine deutliche Reduzierung um über 60 % konnte im Rapsölkraftstoffbetrieb bei den Kohlenwasserstoffen (HC), verglichen mit dem Dieselbetrieb vor und nach der Umrüstung, beobachtet werden, so dass sogar die Anforderung der Abgasstufe IIIB hinsichtlich der HC-Emissionen mit Rapsölkraftstoff eingehalten wurde.

Der Düsenwechsel bei 870 Betriebsstunden führte zu einer Verminderung von CO, HC und Partikelmasse beim Betrieb mit Rapsölkraftstoff und für HC beim Dieselbetrieb.

Zu Beginn der Untersuchungen bei 245 und 265 Bh wurde die Partikelmasse im heißen Abgas nach VDI 2066 bestimmt. Bei 863 und 875 Bh wurde zusätzlich die Partikelprobenahme nach ISO 8178 durchgeführt (Kapitel 4.3.5). Dabei zeigten sich erwartungsgemäß um 12 bis 27 % höhere Partikelemissionen. Der Grund für die höheren Werte nach ISO 8178 liegt darin, dass es bei der Probenahme im kalten Abgas zur Kondensation von Kohlenwasserstoffen kommt, die sich an den Partikeln anlagern können und somit bei der gravimetrischen Auswertung miterfasst werden. Bei allen weiteren Messungen erfolgte die Bestimmung der Partikelemission nach ISO 8178 bzw. Richtlinie 97/68/EG.

Die Untersuchungen zur Mutagenität der Abgaspartikel fanden bei den Emissionsmessungen bei 1064 und 1073 Bh statt. Die spezifischen Emissionen der limitierten Abgaskomponenten entsprechen hierbei im Wesentlichen denen der vorangegangenen Messungen, so dass von einem für diesen Traktor repräsentativen Motorbetrieb bei den Mutagenitätsuntersuchungen auszugehen ist (Abbildung 10 bis Abbildung 13). Lediglich im Dieselbetrieb bei 1064 Bh sind höhere CO- und Partikelmasseemissionen zu verzeichnen. Der teilweise Rückbau der Rapsöl-Umrüstung (durch

Ausschalten der Düsenbeheizung) führte also entgegen der Erwartungen zu einer Verschlechterung des Emissionsverhaltens gegenüber dem Dieselbetrieb mit Düsenbeheizung. Die Betriebsdaten des Traktors und des Prüfstands sowie die Randbedingungen bei den Emissionsmessungen sind in Anhang 1 bis Anhang 5 aufgeführt.

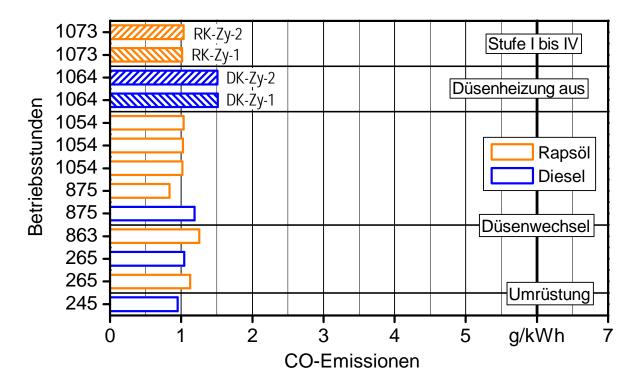


Abbildung 10: CO-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)

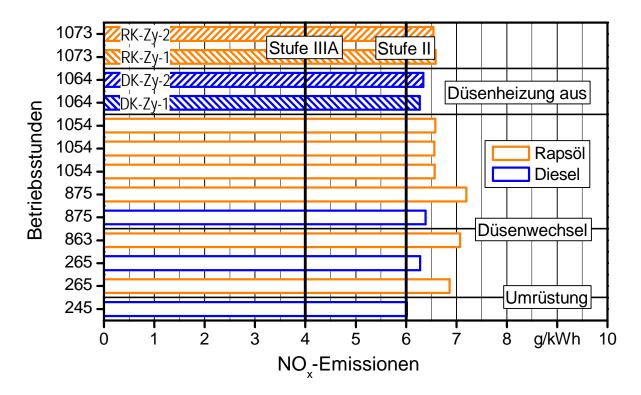


Abbildung 11: NO_x -Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)

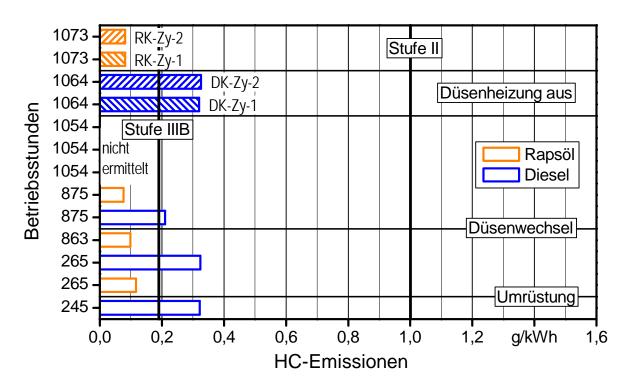


Abbildung 12: HC-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)

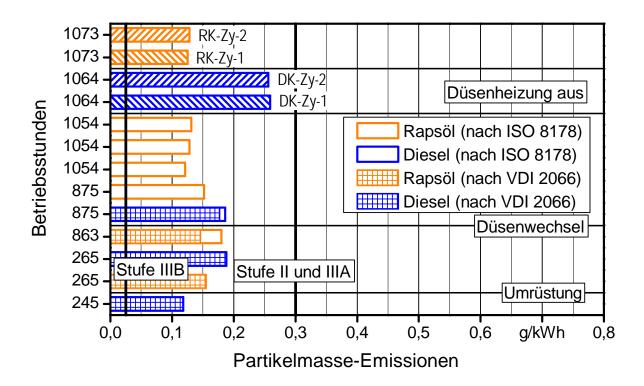


Abbildung 13: Partikelmasse-Emissionen eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsölund Dieselkraftstoff bei wiederkehrenden Messungen (Balken bei den Mutagenitätsmessungen sind schraffiert dargestellt)

5.1.2 Mutagenitätsuntersuchungen

Bei detaillierter Betrachtung der limitierten Abgasemissionen des Traktors in den einzelnen Prüfphasen während der Mutagenitätsuntersuchungen wird deutlich, dass es im Leerlauf (Prüfphase 8) mit Rapsölkraftstoff zu höheren CO- und Partikelmasseemissionen kommt als mit Dieselkraftstoff (Abbildung 14 und Abbildung 17). In allen anderen Lastpunkten waren die CO- und Partikelmasseemissionen geringer. In sieben der acht Prüfphasen wies der Betrieb mit Rapsölkraftstoff leicht höhere NO_X-Emissionen auf (Abbildung 15), wohingegen die HC-Emissionen über alle Prüfphasen deutlich geringer waren als mit Dieselkraftstoff (Abbildung 16).

Es ist bekannt, dass sich hohe Drehzahlen und Lasten günstig auf den Verbrennungsprozess von Rapsölkraftstoff auswirken, da die dabei herrschenden Bedingungen im Brennraum, wie hohe Drücke, Temperaturen und verstärkte Ladungsbewegung zu einem besseren Einspritzstrahlbild, einer intensiveren Gemischbildung und geringeren Abgasemissionen führen [10]. Im Schwachlastbetrieb hingegen bedingt die hohe Viskosität des Rapsölkraftstoffs eine zunehmend schlechtere Zerstäubungsqualität und damit einen erhöhten Schadstoffausstoß.

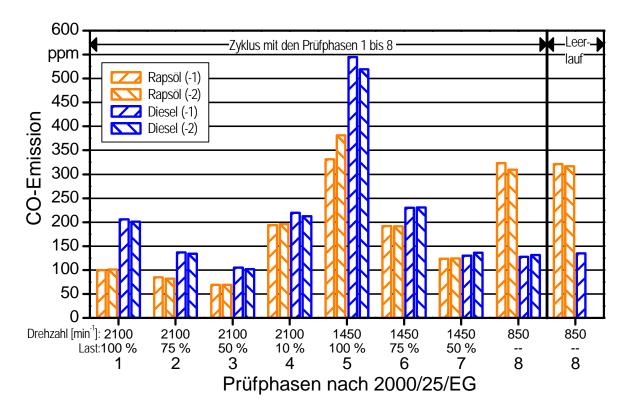


Abbildung 14: CO-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen

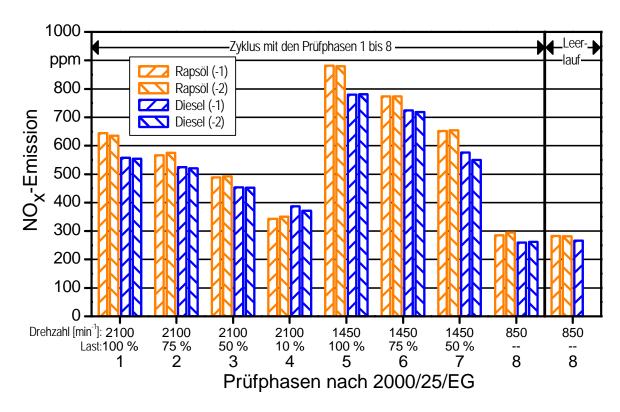


Abbildung 15: NO_x-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen

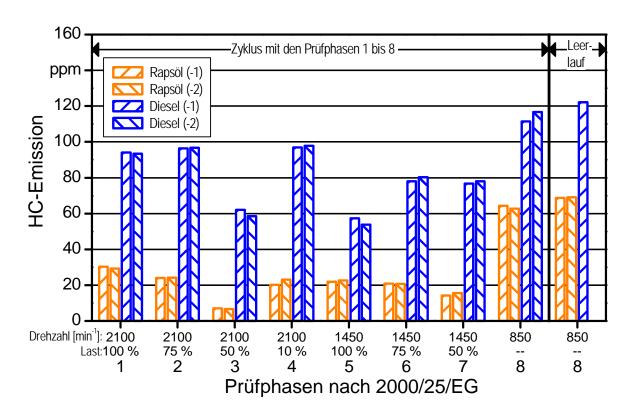


Abbildung 16: HC-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen

Abbildung 17: Partikel-Emissionen (bezogen auf trockenes Abgas) eines Deutz-Fahr Traktors (Abgasstufe II) mit Rapsöl- und Dieselkraftstoff bei den Mutagenitätsuntersuchungen

5.2 Analyse der Abgaspartikel

5.2.1 Bestimmung der Mutagenität mittels Ames-Test

5.2.1.1 Mutantenstamm TA98 ohne S9-Mix

Für die Negativkontrollen (nur DMSO 100 µl) wurden im Mittel 21, 30, 16 und 30 Revertanten ermittelt (Tabelle 15). Die Mittelwerte liegen damit weitgehend im Wertebereich, der bei TA98 im Ames-Test erreicht werden soll (20 bis 50 Revertanten pro Platte).

Tabelle 15: Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für das geprüfte DMSO

Proben	Dosis/Platte	DMSO					
	μl	A	В	С	D	Е	Mittelwert
DkZy-1 / RkZy-1	100	21	22	25	19	18	21
DkZy-2 / RkZy-2	100	33	27	29	35	24	30
DkP8-1 / RkP8-1	100	16	15	15	19	-	16
Blank / RkP8-2	100	21	27	30	34	39	30

In Tabelle 16 und Tabelle 17 sind die Revertantenanzahlen mit TA 98 ohne S9-Mix für die Positivkontrolle mit 3-Nitrobenzanthron (3-NBA), für die Extrakte der Partikelproben und die Blindprobe dargestellt. Dabei beziehen sich die Dosisangaben bei den Positivkontrollen auf die dosierte Masse des jeweiligen Stoffs. Bei den Partikelproben gibt die Dosis jene Menge an Partikeln an, aus der die dichlormethanlöslichen Anteile extrahiert und auf die Platte dosiert worden sind.

Tabelle 16: Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für die Positivkontrolle (3-NBA) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb

Dosis/Platte		3-N	BA	
pg	A	В	С	Mittelwert
17	50	39	31	40
35	43	54	40	46
69	69	50	49	56
139	60	72	70	67
278	90	113	98	100
555	140	163	181	161
Dosis/Platte		DkZy-1 (Die	sel Zyklus 1)	
μg Partikel	A	В	C	Mittelwert
20	23	28	20	24
40	22	16	31	23
80	26	36	35	32
161	32	28	25	28
321	44	40	57	47
643	66	44	62	57
Dosis/Platte		DkZy-2 (Die	sel Zyklus 2)	
μg Partikel	A	В	C	Mittelwert
17	34	22	22	26
33	34	24	33	30
66	51	37	32	40
133	31	46	33	37
266	55	52	68	58
532	79	97	86	87
Dosis/Platte		DkP8-1 (Die	sel Leerlauf)	
μg Partikel	A	В	C	Mittelwert
19	18	20	36	25
37	27	28	28	28
75	37	34	42	38
149	45	57	46	49
299	48	59	56	54
598	91	101	114	102

3-NBA: 3-Nitrobenzanthron

Tabelle 17: Bruttoanzahlen an Revertanten mit TA98 ohne S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)

Dosis/Platte	RkZy-1 (Rapsöl Zyklus 1)					
μg Partikel	A	В	С	Mittelwert		
15	19	16	16	17		
31	20	29	23	24		
61	21	34	19	25		
122	25	24	40	30		
245	27	37	30	31		
489	38	32	42	37		
Dosis/Platte		RkZy-2 (Rap	osöl Zyklus 2)			
μg Partikel	A	В	С	Mittelwert		
15	26	28	31	28		
31	41	33	37	37		
62	37	41	35	38		
124	38	36	46	40		
248	42	41	49	44		
496	69	63	48	60		
Dosis/Platte		RkP8-1 (Raps	söl Leerlauf 1)			
μg Partikel	A	В	С	Mittelwert		
16	18	21	15	18		
32	22	31	30	28		
65	26	22	26	25		
129	30	31	36	32		
259	39	43	38	40		
517	73	52	43	56		
Dosis/Platte		RkP8-2 (Raps	söl Leerlauf 2)			
μg Partikel	A	В	С	Mittelwert		
18	43	37	40	40		
37	50	34	41	42		
73	47	36	42	42		
147	32	46	35	38		
294	37	54	35	42		
587	64	68	59	64		
Dosis/Platte		Blank (Bl	lindprobe)			
μg Partikel	A	В	С	Mittelwert		
0	27	30	31	29		
0	27	12	33	24		
0	35	27	31	31		
0	27	26	31	28		
0	27	29	28	28		
0	32	31	28	30		

Die als Positivkontrolle eingesetzte Substanz 3-Nitrobenzanthron (3-NBA) lieferte bereits ab einer Dosis von ca. 139 pg / Platte Revertantenanzahlen, die um mehr als Faktor 2 über dem Mittelwert der Blindwertextrakte lagen. Die Auswertung dieser Netto-Revertantenanzahlen ergab eine rechnerische Netto-Anzahl von 2,3 x 10⁸ Revertanten pro mg 3-NBA. Dieser Wert deckt sich gut mit Angaben von Mücke et al. (2002) [12], die 3,2 x 10⁸ Revertanten pro mg 3-NBA angaben.

Im Vergleich dazu lieferten die Extrakte der untersuchten Partikelproben nur sehr kleine Revertantenanzahlen. Dies verdeutlicht auch Abbildung 18.

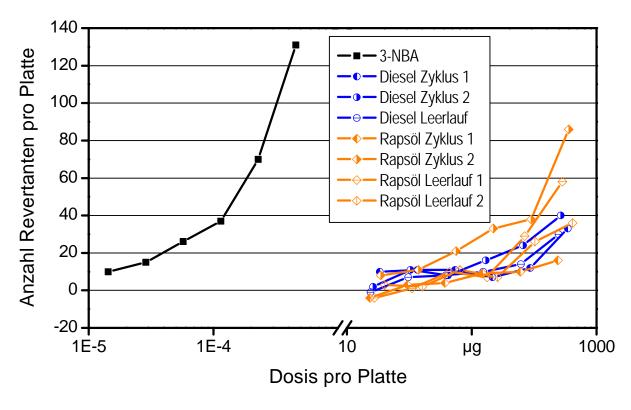


Abbildung 18: Vergleich der mit dem TA98-Stamm ohne S9-Mix erzielte Dosis-Wirkungsbeziehungen für die Positivkontrolle mit 3-NBA sowie für die Extrakte aller Proben

Platten mit Extrakt aus Probe DkZy-1 (Diesel Zyklus 1) zeigten für den unverdünnten und 1:2 verdünnten Extrakt nach MARON und AMES (1983) [9] signifikante Revertantenanzahlen. Bezogen auf 1 mg ergab sich eine Netto-Anzahl von 43 Revertanten.

Platten mit Extrakt aus Probe DkZy-2 (Diesel Zyklus 2) wiesen gegenüber Probe DkZy-1 etwas höhere Mutationsraten auf. Bei Einsatz von unverdünntem Extrakt wurde das Kriterium von MARON und AMES (1983) [9] erfüllt. Bezogen auf 1 mg Partikel ergab sich rechnerisch eine Netto-Revertantenanzahl von 80.

Der Extrakt aus Probe DkP8-1 (Diesel Leerlauf) erreichte von allen Proben die höchsten Revertantenanzahlen mit im Mittel 102 Revertanten pro Platte beim Einsatz des unverdünnten Extrakts. Die Revertantenanzahlen waren hier bei insgesamt vier Verdünnungsstufen (ab 1:8, entspricht

75 µg Partikel) signifikant erhöht. Es ergab sich eine Netto-Revertantenanzahl von 121 pro mg Partikel.

Probe RkZy-1 (Rapsöl Zyklus 1) wies tendenziell leicht erhöhte Revertantenanzahlen gegenüber den von DMSO ausgelösten Spontanmutationen auf. Die von MARON und AMES (1983) [9] für den Nachweis einer mutagenen Wirkung empfohlene Erhöhung der Revertantenanzahl je Platte (Verdopplung der Revertantenanzahl im Vergleich zum Blindwert) wurde dabei aber nicht erreicht. Auf die Berechnung der Revertantenanzahl pro mg Partikel wurde deshalb verzichtet.

Probe RkZy-2 (Rapsöl Zyklus 2) wies nur beim unverdünnten Extrakt signifikante Revertantenanzahlen auf. Die rechnerische Ermittlung der Revertantenanzahl pro mg Partikel ergab 47.

Der Extrakt aus Probe RkP8-1 (Rapsöl Leerlauf 1) löste unverdünnt und in der 1:2 Verdünnung signifikant erhöhte Revertantenanzahlen aus. Bezogen auf 1 mg Partikel ergab sich rechnerisch eine Netto-Revertantenanzahl von 55.

Bei Probe RkP8-2 (Rapsöl Leerlauf 2) löste der unverdünnte Extrakt signifikant erhöhte Revertantenanzahlen aus. Rechnerisch ergab sich eine Netto-Revertantenanzahl von 50 pro mg Partikel.

Bei der Blindprobe ergaben sich bei allen Verdünnungsstufen Werte, die den von DMSO ausgelösten Spontanmutationen entsprachen.

5.2.1.2 Mutantenstamm TA98 mit S9-Mix

Für die Negativkontrollen (nur DMSO) wurden im Mittel 29, 30, 27 und 34 Revertanten ermittelt. Die Werte lagen damit im üblichen Wertebereich von 20 bis 50 Revertanten pro Platte (Tabelle 18).

Proben	Dosis/Platte	DMSO					
	μl	A	В	С	D	Е	Mittelwert
DkZy-1 / RkZy-1	100	35	22	23	32	33	29
DkZy-2 / RkZy-2	100	21	27	30	36	35	30
DkP8-1 / RkP8-1	100	27	33	20	26	31	27
Blank / RkP8-2	100	2	51	29	43	46	34

Tabelle 18: Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für das geprüfte DMSO

Die als Positivkontrolle eingesetzte Substanz 2-Aminofluoren (2-AF) lieferte bei 4 geprüften Dosierungen signifikante Revertantenanzahlen. Die Auswertung der zugehörigen Netto-Revertantenanzahlen ergab eine rechnerische Netto-Anzahl von 1,76 x 10⁵ Netto-Revertanten pro mg 2-AF. Dieser Wert liegt in der Größenordnung der Befunde von MARON und AMES (1983) [9], die für TA98 6,2 x 10⁵ Revertanten pro mg 2-AF erfasst haben.

Platten mit Extrakt aus Probe DkZy-1 (Diesel Zyklus 1) wiesen beim unverdünnten Extrakt nach MARON und AMES (1983) [9] signifikante Revertantenanzahlen auf. Bezogen auf 1 mg Partikel ergab sich eine Netto-Revertantenanzahl von 59.

Platten mit Extrakt aus Probe DkZy-2 (Diesel Zyklus 2) wiesen tendenziell leicht erhöhte Revertantenanzahlen gegenüber den von DMSO ausgelösten Spontanmutationen auf. Die von MARON und AMES (1983) [9] für den Nachweis einer mutagenen Wirkung empfohlene Erhöhung der Revertantenanzahl je Platte (Verdopplung der Revertantenanzahl im Vergleich zum Blindwert) wurde dabei aber nicht erreicht. Auf die Berechnung der Revertantenanzahl pro mg Partikelmasse wurde deshalb verzichtet. Dasselbe galt für Probe RkZy-1 (Rapsöl Zyklus 1).

Der Extrakt aus Probe DkP8-1 (Diesel Leerlauf) erreichte von allen Proben die höchsten Revertantenanzahlen mit im Mittel 130 Revertanten pro Platte beim Einsatz des unverdünnten Extrakts. Die Revertantenanzahlen waren hier bei insgesamt drei Verdünnungsstufen (ab 1:4, entspricht 149 µg Partikel) signifikant erhöht. Es ergab sich eine Netto-Revertantenanzahl von 149 Revertanten pro mg Partikel.

Bei den restlichen Partikelproben aus dem Rapsölkraftstoffbetrieb löste jeweils nur der unverdünnte Extrakt nach MARON und AMES (1983) [9] signifikante Revertantenanzahlen aus. Bezogen auf 1 mg Partikelmasse ergaben sich Netto-Revertantenanzahlen von 53 für Probe RkZy-2 (Rapsöl Zyklus 2), von 58 für Probe RkP8-1 (Rapsöl Leerlauf 1) und von 50 für Probe RkP8-2 (Rapsöl Leerlauf 2).

Bei der Blindprobe (Blank) ergaben sich bei allen Verdünnungsstufen Werte, die den von DMSO ausgelösten Spontanmutationen entsprachen.

Insgesamt konnte durch die Zugabe von S9-Mix keine Erhöhung der Mutationsraten gegenüber den Ansätzen ohne S9-Mix erzielt werden. Die metabolische Wirkung ist bei diesen Extrakten für den Teststamm TA98 vernachlässigbar.

Tabelle 19 und Tabelle 20 zeigen die Bruttoanzahlen an Revertanten für die Positivkontrolle mit 2-Aminofluoren (2-AF), für die Extrakte der Partikelproben und die Blindprobe. Dabei beziehen sich die Dosisangaben bei den Positivkontrollen auf die dosierte Masse des jeweiligen Stoffs. Bei den Partikelproben gibt die Dosis jene Menge an Partikeln an, aus der die dichlormethanlöslichen Anteile extrahiert und auf die Platte dosiert worden sind. Abbildung 20 zeigt die Dosis-Wirkungsbeziehungen für die Positivkontrolle und die Extrakte der Partikelproben.

Tabelle 19: Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für die Positivkontrolle (2-AF) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb

Dosis/Platte		2-,	AF	
μg	A	В	С	Mittelwert
0,156	32	30	30	31
0,313	61	48	49	53
0,625	109	125	129	121
1,25	206	223	252	227
2,50	491	350	476	439
5,00	887	955	879	907
Dosis/Platte		DkZy-1 (Die	sel Zyklus 1)	
μg Partikel	A	В	C	Mittelwert
20	33	35	37	35
40	30	42	39	37
80	27	37	64	43
161	31	41	40	37
321	50	39	41	43
643	60	72	79	70
Dosis/Platte		DkZy-2 (Die	esel Zyklus 2)	
μg Partikel	A	В	C	Mittelwert
17	46	48	45	46
33	33	43	39	38
66	47	36	52	45
133	43	49	40	44
266	46	39	49	45
532	54	56	55	55
Dosis/Platte		DkP8-1 (Die	sel Leerlauf)	
μg Partikel	A	В	C	Mittelwert
19	27	28	32	29
37	43	32	34	36
75	45	41	41	42
149	65	46	58	56
299	74	52	77	68
598	133	131	127	130

2-AF: 2-Aminofluoren

Tabelle 20: Bruttoanzahlen an Revertanten mit TA98 mit S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)

Dosis/Platte	RkZy-1 (Rapsöl Zyklus 1)						
μg Partikel	A	В	С	Mittelwert			
15	33	32	41	35			
31	35	33	35	34			
61	43	30	42	38			
122	48	32	44	41			
245	48	47	52	49			
489	52	45	42	46			
Dosis/Platte		RkZy-2 (Raj	psöl Zyklus 2)				
μg Partikel	A	В	С	Mittelwert			
15	40	33	37	37			
31	37	39	42	39			
62	27	34	31	31			
124	41	37	45	41			
248	59	53	54	55			
496	80	66	63	70			
Dosis/Platte		RkP8-1 (Rap	söl Leerlauf 1)				
μg Partikel	A	В	С	Mittelwert			
16	27	32	30	30			
32	27	32	38	32			
65	41	43	31	38			
129	39	32	47	39			
259	47	45	46	46			
517	52	69	78	66			
Dosis/Platte		RkP8-2 (Rap	söl Leerlauf 2)				
μg Partikel	A	В	С	Mittelwert			
18	43	37	40	40			
37	50	34	41	42			
73	47	36	42	42			
147	32	46	35	38			
294	37	54	35	42			
587	64	68	59	64			
Dosis/Platte		*	lindprobe)				
μg Partikel	A	В	C	Mittelwert			
0	27	30	31	29			
0	27	12	33	24			
0	35	27	31	31			
0	27	26	31	28			
0	27	29	28	28			
0	32	31	28	30			

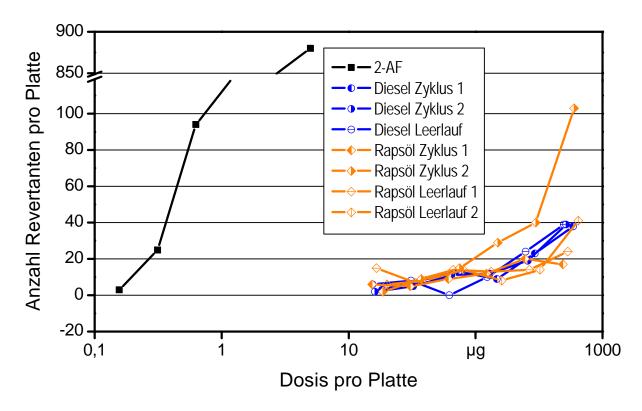


Abbildung 19: Vergleich der mit dem TA98-Stamm mit S9-Mix erzielten Dosis-Wirkungsbeziehungen für die Positivkontrolle mit 2-AF sowie für die Extrakte aller Proben

5.2.1.3 Mutantenstamm TA100 ohne S9-Mix

Für die Negativkontrollen (Tabelle 21; nur DMSO) wurden im Mittel 127, 111, 95 und 159 Revertanten ausgezählt. Die Werte lagen im üblichen Wertebereich von 75 bis 200 Revertanten pro Platte.

Proben	Dosis/Platte	DMSO					
	μl	A	В	С	D	Е	Mittelwert
DkZy-1 / RkZy-1	100	112	133	142	104	144	127
DkZy-2 / RkZy-2	100	109	138	113	104	90	111
DkP8-1 / RkP8-1	100	98	102	105	83	85	95
Blank / RkP8-2	100	183	163	154	148	148	159

Tabelle 21: Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für das geprüfte DMSO

Beim Teststamm TA100 erhöhte sich die Revertantenanzahl bei Einsatz der Positivkontrolle Methylmethansulfonat (MMS) in linearer Abhängigkeit von der eingesetzten Menge an MMS auf ca. 436 Revertanten pro Platte. Die spezifische mutagene Wirkung von Methylmethansulfonat auf

den Stamm TA100 errechnet sich damit zu 1,25 x 10³ Netto-Revertanten pro mg². Dieser Wert korreliert gut mit dem Literaturwert von MARON und AMES (1983) [9], der 2,10 x 10³ Revertanten pro mg³ beträgt.

Im Vergleich zur Positivkontrolle lieferten die Extrakte der untersuchten Partikelproben ähnliche Revertantenanzahlen (Abbildung 20). Zudem ist bei den Proben DkZy-1, DkZy-2 und DkP8-1 ein linearer Zusammenhang von zugegebener Extraktmenge (Konzentration) und Revertantenanzahl erkennbar. TA100 ohne metabolische Aktivierung war das Testsystem, das am empfindlichsten auf die geprüften Extrakte reagierte.

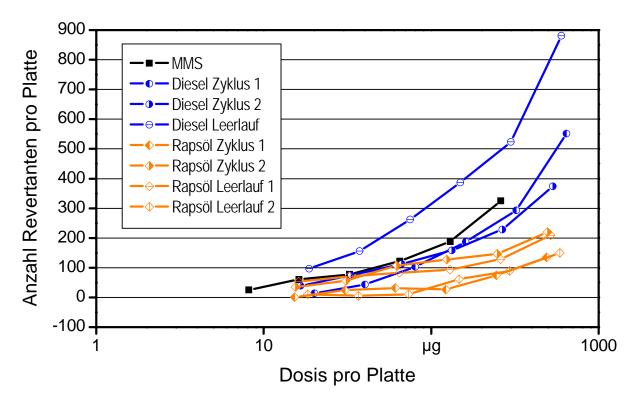


Abbildung 20: Vergleich der mit dem TA100-Stamm ohne S9-Mix erzielten Dosis-Wirkungsbeziehungen für die Positivkontrolle mit MMS sowie für die Extrakte aller Proben

Platten mit Extrakt aus Probe DkZy-1 (Diesel Zyklus 1) zeigten für drei Verdünnungsstufen hohe Revertantenanzahlen, die den doppelten Wert gegenüber dem Spontanmutationswert erreichten (bei TA100 ist das aber keine notwendige Voraussetzung zum Nachweis von Mutationen). Bezogen auf 1 mg ergab sich eine Netto-Anzahl von 716 Revertanten.

Platten mit Extrakt aus Probe DkZy-2 (Diesel Zyklus 2) wiesen gegenüber Probe DkZy-1 etwas niedrigere Mutationsraten auf. Bei vier Verdünnungsstufen wurde das Kriterium von MARON und

² Hinweis zur Interpretation: Diese Anzahl wäre zu erwarten, wenn 1 mg Methylmethansulfonat in Dosen von ca. 260 µg auf eine entsprechend große Anzahl von Agarschalen einwirken würde.

 $^{^{3}}$ MARON u. AMES (1983) [9]: 2730 Revertanten / μ l MMS (r = 1,3 g / ml)

AMES (1983) [9] erfüllt. Bezogen auf 1 mg Partikel ergab sich rechnerisch eine Netto-Revertantenanzahl von 506.

Der Extrakt aus Probe DkP8-1 (Diesel Leerlauf) erreichte wieder von allen Proben die höchsten Revertantenanzahlen mit im Mittel 976 Revertanten pro Platte beim Einsatz des unverdünnten Extrakts. In diesem Testsystem war sogar der am stärksten verdünnte Extrakt signifikant mutagen. Es ergab sich eine Netto-Revertantenanzahl von 1146 pro mg Partikel.

Probe RkZy-1 (Rapsöl Zyklus 1) zeigte für die höchste Verdünnungsstufe signifikante Revertantenanzahlen. Bezogen auf 1 mg ergab sich eine Netto-Anzahl von 189 Revertanten.

Probe RkZy-2 (Rapsöl Zyklus 2) wies bei drei Verdünnungsstufen signifikante Revertantenanzahlen auf. Die rechnerische Ermittlung der Revertantenanzahl pro mg Partikel ergab 293.

Der Extrakt aus Probe RkP8-1 (Rapsöl Leerlauf 1) löste unverdünnt, in der 1:2 Verdünnung und teilweise in der 1:4 Verdünnung signifikant erhöhte Revertantenanzahlen aus. Bezogen auf 1 mg Partikel ergab sich rechnerisch eine Netto-Revertantenanzahl von 286.

Platten mit Extrakt aus Probe RkP8-2 (Rapsöl Leerlauf 2) wiesen bei drei Verdünnungsstufen erhöhte Revertantenanzahlen gegenüber den von DMSO ausgelösten Spontanmutationen auf, wobei das Kriterium von MARON und AMES (1983) [9] nur beim unverdünnten Extrakt teilweise erfüllt wurde. Dennoch konnte eine Netto-Revertantenanzahl errechnet werden: Sie betrug 242 Revertanten pro mg Partikel.

Bei der Blindprobe (Blank) ergaben sich bei allen Verdünnungsstufen Werte, die den von DMSO ausgelösten Spontanmutationen entsprachen.

Tabelle 22 und Tabelle 23 zeigen die Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für alle untersuchten Extrakte. Dabei beziehen sich die Dosisangaben bei den Positivkontrollen auf die dosierte Masse des jeweiligen Stoffs. Bei den Partikelproben gibt die Dosis jene Menge an Partikeln an, aus der die dichlormethanlöslichen Anteile extrahiert und auf die Platte dosiert worden sind.

Tabelle 22: Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für die Positivkontrolle (MMS) sowie für die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb

Dosis/Platte		MI	MS	
μg	A	В	С	Mittelwert
8,1	123	136	148	136
16	164	159	189	171
33	161	202	202	188
65	216	244	239	233
130	287	307	302	299
260	431	428	449	436
Dosis/Platte		DkZy-1 (Die	sel Zyklus 1)	
μg Partikel	A	В	С	Mittelwert
20	155	157	111	141
40	180	154	176	170
80	228	209	253	230
161	303	316	323	314
321	456	393	412	420
643	641	732	662	678
Dosis/Platte		DkZy-2 (Die	sel Zyklus 2)	
μg Partikel	A	В	С	Mittelwert
17	142	145	161	149
33	182	194	178	185
66	218	212	242	224
133	250	285	272	269
266	350	339	327	339
532	484	486	483	484
Dosis/Platte		DkP8-1 (Die	sel Leerlauf)	
μg Partikel	A	В	С	Mittelwert
19	203	193	180	192
37	236	259	257	251
75	361	376	333	357
149	509	477	458	481
299	649	596	610	618
598	914	1090	923	976

MMS: Methylmethansulfonat

Tabelle 23: Bruttoanzahlen an Revertanten mit TA100 ohne S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe (Blank)

Dosis/Platte	RkZy-1 (Rapsöl Zyklus 1)					
μg Partikel	A	В	С	Mittelwert		
15	130	134	120	128		
31	147	161	145	151		
61	154	158	166	159		
122	166	146	148	153		
245	178	231	193	201		
489	252	263	272	262		
Dosis/Platte		RkZy-2 (Ra	psöl Zyklus 2)			
μg Partikel	A	В	С	Mittelwert		
15	136	158	142	145		
31	171	157	172	167		
62	214	249	190	218		
124	257	231	225	238		
248	267	231	274	257		
496	324	335	332	330		
Dosis/Platte		RkP8-1 (Rap	söl Leerlauf 1)			
μg Partikel	A	В	С	Mittelwert		
16	148	172	122	147		
32	155	184	159	166		
65	178	171	184	178		
129	170	196	197	188		
259	260	188	219	222		
517	280	305	325	303		
Dosis/Platte		RkP8-2 (Rap	söl Leerlauf 2)			
μg Partikel	A	В	С	Mittelwert		
18	184	156	167	169		
37	151	172	170	164		
73	180	162	168	170		
147	257	218	231	235		
294	210	236	251	232		
587	270	320	328	309		
Dosis/Platte		Blank (B	lindprobe)			
μg Partikel	A	В	С	Mittelwert		
0	155	112	143	137		
0	160	163	148	157		
0	165	216	178	186		
0	150	177	151	159		
0	155	246	143	181		
0	153	112	148	138		

5.2.1.4 Mutantenstamm TA100 mit S9-Mix

Für die Negativkontrollen mit S9-Mix (Tabelle 24) wurden im Mittel 158, 206, 203 und 180 Revertanten pro Agarplatte ermittelt. Die Werte lagen somit weitgehend im üblichen Wertebereich von 75 - 200 Revertanten pro Platte.

Proben	Dosis/Platte		DMSO						
	μl	A	В	С	D	Е	Mittelwert		
DkZy-1 / RkZy-1	100	148	157	152	160	171	158		
DkZy-2 / RkZy-2	100	190	224	211	187	216	206		
DkP8-1 / RkP8-1	100	226	192	201	196	201	203		
Blank / RkP8-2	100	176	153	188	189	194	180		

Tabelle 24: Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für das geprüfte DMSO

Abbildung 21 zeigt die mit dem TA100-Stamm mit S9-Mix erzielten Dosis-Wirkungsbeziehungen.

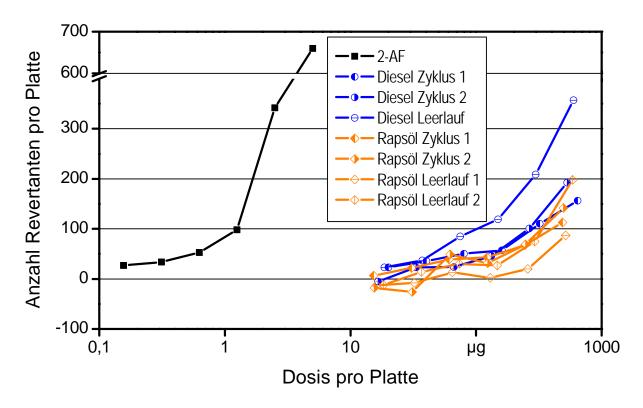


Abbildung 21: Vergleich der mit dem TA100-Stamm mit S9-Mix erzielten Dosis-Wirkungsbeziehungen für die Positivkontrolle mit 2-AF sowie für die Extrakte aller Proben

Die Positivkontrolle 2-Aminofluoren (2-AF) lieferte bei 2 geprüften Dosierungen signifikant erhöhte Revertantenanzahlen. Die Auswertung ergab 1,3 x 10⁵ Netto-Revertanten pro mg 2-AF. Dieser Wert liegt in der Größenordnung der Befunde von MARON und AMES (1983) [9], die 3,0 x 10⁵ Revertanten pro mg 2-AF erfasst haben.

Platten mit Extrakt aus Probe DkZy-1 (Diesel Zyklus 1) zeigten tendenziell erhöhte Revertantenanzahlen mit steigender Extraktkonzentration. Bezogen auf 1 mg Partikel ergab sich eine Netto-Anzahl von 188 Revertanten.

Platten mit Extrakt aus Probe DkZy-2 (Diesel Zyklus 2) wiesen gegenüber Probe DkZy-1 etwas höhere Mutationsraten auf. Bei Einsatz von unverdünntem Extrakt wurde das Kriterium von MARON und AMES (1983) [9] teilweise erfüllt. Bezogen auf 1 mg Partikel ergab sich rechnerisch eine Netto-Revertantenanzahl von 275.

Der Extrakt aus Probe DkP8-1 (Diesel Leerlauf) erreichte auch hier von allen Proben die höchsten Revertantenanzahlen mit im Mittel 560 Revertanten pro Platte beim Einsatz des unverdünnten Extrakts. Die Revertantenanzahlen waren hier bei zwei Verdünnungsstufen signifikant erhöht. Es ergab sich eine Netto-Revertantenanzahl von 436 pro mg Partikel.

Probe RkZy-1 (Rapsöl Zyklus 1) wies tendenziell leicht erhöhte Revertantenanzahlen gegenüber den von DMSO ausgelösten Spontanmutationen auf. Die von MARON und AMES (1983) [9] für den Nachweis einer mutagenen Wirkung empfohlene Erhöhung der Revertantenanzahl je Platte (Verdopplung der Revertantenanzahl im Vergleich zum Blindwert) wurde zwar nicht erreicht, doch konnte die Netto-Revertantenanzahl berechnet werden. Sie betrug 161 Revertanten pro mg Partikel.

Auch Probe RkZy-2 (Rapsöl Zyklus 2) und Probe RkP8-1 (Rapsöl Leerlauf 1) wiesen steigende Revertantenanzahlen bei höheren Konzentrationen auf, allerdings wurde das Kriterium von MARON und AMES (1983) [9] nicht erfüllt. Die Netto-Revertantenanzahlen pro mg Partikel konnten mit 215 für Probe RkZy-2 und 152 für Probe RkP8-1 berechnet werden.

Bei Probe RkP8-2 (Rapsöl Leerlauf 2) löste der unverdünnte Extrakt signifikant erhöhte Revertantenanzahlen aus. Rechnerisch ergab sich eine Netto-Revertantenanzahl von 292 pro mg Partikel.

Bei der Blindprobe (Blank) ergaben sich bei allen Verdünnungsstufen Werte, die den von DMSO ausgelösten Spontanmutationen entsprachen.

Tabelle 25 und Tabelle 26 zeigen die Ergebnisse im Überblick. Dabei beziehen sich die Dosisangaben bei den Positivkontrollen auf die dosierte Masse des jeweiligen Stoffs. Bei den Partikelproben gibt die Dosis jene Menge an Partikeln an, aus der die dichlormethanlöslichen Anteile extrahiert und auf die Platte dosiert worden sind.

Insgesamt führte die Zugabe von S9-Mix nicht zu einer Erhöhung der Mutationsraten gegenüber den Ansätzen ohne S9-Mix.

Tabelle 25: Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für die Positivkontrolle (2-AF) sowie die Extrakte der Partikelproben aus dem Dieselkraftstoffbetrieb

Dosis/Platte	2-AF							
μg	A	В	В С					
0,156	184	184	185	184				
0,313	203	207	164	191				
0,625	211	212	210	211				
1,25	231	323	212	255				
2,50	509	488	503	500				
5,00	772	849	831	817				
Dosis/Platte	DkZy-1 (Diesel Zyklus 1)							
μg Partikel	A	В	С	Mittelwert				
20	190	178	173	180				
40	198	188	196	194				
80	216	217	191	208				
161	201	212	231	215				
321	276	260	266	267				
643	318	281	341	313				
Dosis/Platte	DkZy-2 (Diesel Zyklus 2)							
μg Partikel	A	В	С	Mittelwert				
17	217	207	177	200				
33	254	213	218	228				
66	214	227	249	230				
133	259	261	235	252				
266	312	318	289	306				
532	356	414	423	398				
Dosis/Platte	DkP8-1 (Diesel Leerlauf)							
μg Partikel	A	В	С	Mittelwert				
19	219	213	246	226				
37	266	226	229	240				
75	269	330	266	288				
149	324	324	319	322				
299	408	426	404	413				
598	564	524	593	560				

2-AF: 2-Aminofluoren

Tabelle 26: Bruttoanzahlen an Revertanten mit TA100 mit S9-Mix für die Extrakte der Partikelproben aus dem Rapsölkraftstoffbetrieb sowie für die Blindprobe

Dosis/Platte	RkZy-1 (Rapsöl Zyklus 1)						
μg Partikel	A	В	С	Mittelwert			
15	178	166	149	164			
31	164	188	188	180			
61	181	197	213	197			
122	184	203	216	201			
245	239	220	214	224			
489	300	273	239	271			
Dosis/Platte	RkZy-2 (Rapsöl Zyklus 2)						
μg Partikel	A	В	С	Mittelwert			
15	193	196	175	188			
31	167	183	189	180			
62	252	252	259	254			
124	249	227	234	237			
248	263	278	283	275			
496	323	349	370	347			
Dosis/Platte	RkP8-1 (Rapsöl Leerlauf 1)						
μg Partikel	A	В	С	Mittelwert			
16	195	156	221	191			
32	164	221	201	195			
65	215	205	229	216			
129	210	221	186	206			
259	215	220	234	223			
517	293	275	304	291			
Dosis/Platte	RkP8-2 (Rapsöl Leerlauf 2)						
μg Partikel	A	В	С	Mittelwert			
18	178	173	152	168			
37	192	211	178	194			
73	198	230	203	210			
147	215	209	198	207			
294	246	273	246	255			
587	382	345	407	378			
Dosis/Platte	Blank (Blindprobe)						
μg Partikel	A	В	С	Mittelwert			
1	145	159	148	151			
1	169	170	154	164			
1	147	173	177	166			
1	182	156	155	164			
1	173	165	183	174			
1	161	170	210	180			

5.2.1.5 Vergleich der Ergebnisse

In Relation zu den mutagen wirkenden Reinchemikalien (Positivkontrollen) – mit Ausnahme von Methylmethansulfonat – erwiesen sich die untersuchten Extraktinhaltstoffe aller Proben im Ames-Test mit den Prüfstämmen TA98 und TA100 als vergleichsweise wenig wirksam. Der Teststamm TA100 ohne metabolische Aktivierung mit S9-Mix zeigte die größte Sensitivität gegenüber der Partikelextrakte auf. Bei diesem Teststamm sind auch die Unterschiede der mutagenen Wirkung zwischen den Partikelextrakten aus dem Betrieb mit Dieselkraftstoff und Rapsölkraftstoff am größten.

Tabelle 27, Abbildung 22 und Abbildung 23 geben einen Überblick über die ermittelte Anzahl an Netto-Revertanten bei den Untersuchungen und zeigen die Ergebnisse bezogen auf ein mg Partikel bzw. einen Liter Abgas (unverdünnt).

Tabelle 27: Ermittelte Anzahlen an zusätzlichen Revertanten bezogen auf ein Milligramm der Prüfsubstanzen bzw. auf einen Liter Abgas (unverdünnt)

Netto-Revertanten	TA98 ohne S9		TA98 mit S9		TA100 ohne S9		TA100 mit S9	
Positivkontrolle	3-NBA 2,3 x 10 ⁸		2-AF		MMS		2-AF	
			1,76 x 10 ⁵		1,25 x 10 ³		1,32 x 10 ⁵	
Bezugsgröße	1 mg	11	1 mg	11	1 mg	11	1 mg	11
Dieselbetrieb								
DkZy-1	43	1,6	59	2,3	716	27,3	188	7,2
DkZy-2	80	3,0	n.d.	n.d.	506	19,0	275	10,3
DkP8-1	121	4,0	149	4,9	1146	37,4	436	14,2
Rapsölbetrieb								
RkZy-1	n.d.	n.d.	n.d.	n.d.	189	5,7	161	4,9
RkZy-2	47	1,5	53	1,6	293	9,1	215	6,7
RkP8-1	55	4,0	58	4,2	286	20,8	152	11,1
RkP8-2	50	3,9	50	3,9	242	19,0	292	23,0

n.d.: nicht bestimmbar

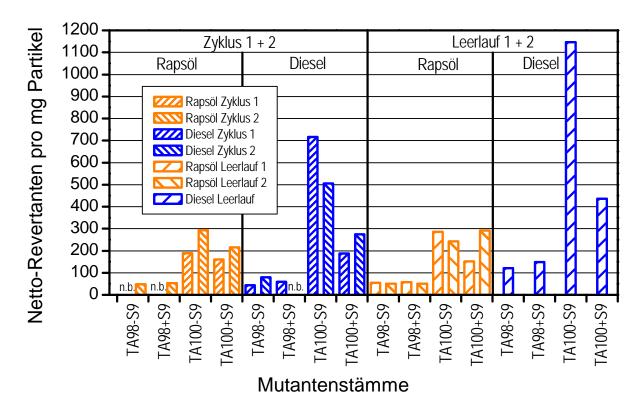


Abbildung 22: Anzahl an zusätzlichen Revertanten (Netto-Revertanten) bezogen auf 1 mg der Partikelproben

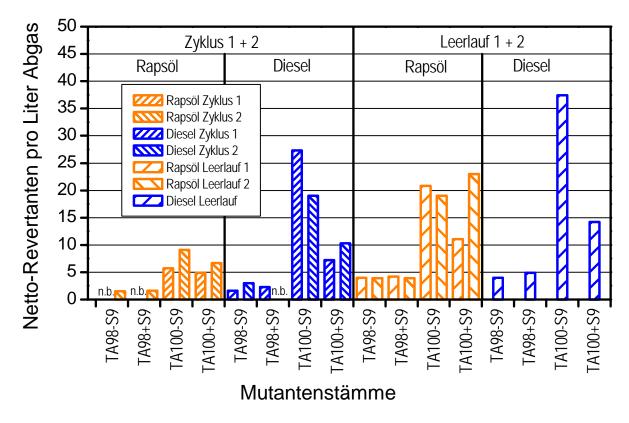


Abbildung 23: Anzahl an zusätzlichen Revertanten (Netto-Revertanten) pro Liter Abgas (unverdünnt)

In Abbildung 24 ist die relative Mutagenität der Abgaspartikelextrakte beim Betrieb mit Rapsölkraftstoff im Vergleich zum Betrieb mit Dieselkraftstoff über den gesamten 8-Phasen-Prüfzyklus und im Leerlauf dargestellt. Die Ergebnisse werden wiederum zum einen auf die gleiche Partikelmasse und zum anderen auf das gleiche Abgasvolumen bezogen.

Dabei zeigt sich, dass die Mutagenität von Partikelemissionen bezogen auf die gleiche Partikelmasse beim Betrieb mit Rapsölkraftstoff über alle 8 Prüfphasen mit ca. 39 bis 90 % auf deutlich geringerem Niveau als beim Betrieb mit Dieselkraftstoff liegt. Da sich jedoch die Partikelmassemissionen je nach Prüfphase sehr stark unterscheiden und insbesondere im Leerlauf mit Rapsölkraftstoff höher liegen als mit Dieselkraftstoff (Abbildung 17), ist auch die Betrachtung der Ergebnisse, bezogen auf das gleiche Abgasvolumen, von Bedeutung. In Bezug auf das gleiche Abgasvolumen beträgt die mutagene Wirkung der Partikelemissionen bei Rapsölkraftstoffbetrieb ca. 32 bis 73 % des Dieselkraftstoffbetriebs.

In der Leerlaufphase ist die Mutagenität von Rapsölkraftstoff bezogen auf eine einheitliche Partikelmasse mit einem Niveau von 23 bis 51 % ebenfalls deutlich geringer als bei Dieselkraftstoff. Bezogen auf das gleiche Abgasvolumen ist das mutagene Potenzial mit Rapsölkraftstoff beim Bakterienstamm TA100 mit S9-Mix um 20 % höher, bei dem Bakterienstamm TA98 ohne S9-Mix etwa gleich hoch und bei TA98 mit S9-Mix um 16 % geringer als mit Dieselkraftstoff. Beim Bakterienstamm TA100 ohne metabolische Aktivierung, welcher die größte Sensitivität aller Teststämme aufwies, war nahezu eine Halbierung der mutagenen Wirkung gegenüber Dieselkraftstoff festzustellen (Abbildung 24).

Insgesamt ist bei den hier durchgeführten Untersuchungen die Mutagenität von Abgaspartikeln, die bei der Verbrennung von Rapsölkraftstoff auf einem Planfilter bei max. 52 °C gemäß der Richtlinie 97/68/EG gesammelt wurden, sowohl über den gesamten 8-Phasen-Prüfzyklus als auch im Leerlauf meist deutlich geringer als bei der Verbrennung von Dieselkraftstoff.

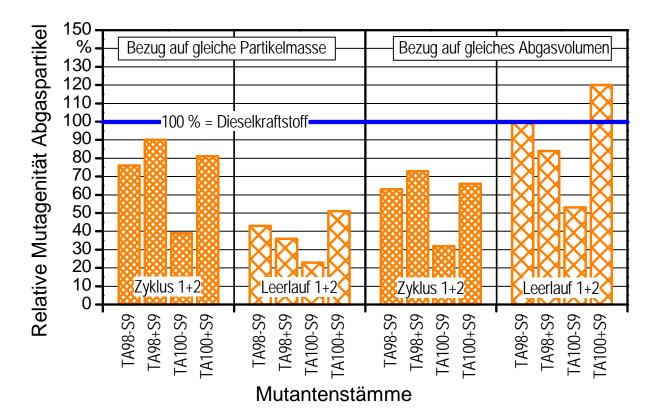


Abbildung 24: Relative Mutagenität von Abgaspartikeln beim Betrieb mit Rapsölkraftstoff im Vergleich zum Betrieb mit Dieselkraftstoff, bezogen auf Partikelmasse und Abgasvolumen beim 8-Phasen-Prüfzyklus und im Leerlauf

5.2.2 Chemische Analyse der Abgaspartikel

Für die Einordnung der Ergebnisse im Ames-Test ist die Betrachtung der in der chemischen Analyse gemessenen Werte für Nitro-PAK (Tabelle 28) hilfreich.

Die meisten Nitro-PAK sind deutlich wirksamer in Ames-Testsystemen ohne metabolische Aktivierung, also ohne Zugabe von S9-Mix (KIELHORN et al., 2003 [4]). Dies gilt insbesondere (ein bis mehrere Größenordnungen) für 2-Nitropyren und 3-Nitrofluoranthen, die zudem um eine Größenordnung mutagener sind als 1-Nitropyren und 2-Nitrofluoranthen.

3-Nitrofluoranthen war nur in den Proben der Dieselkraftstoffpartikel nachweisbar. Die Proben DkZy-1 und DkZy-2 wiesen zudem hohe Mengen an 2-Nitropyren auf. Beides kann die im Testsystem TA100 ohne S9-Mix gefundenen hohen Revertantenanzahlen für diese Proben erklären (Abbildung 22 und Abbildung 23). Auf das Testsystem TA100 mit S9-Mix war dagegen wie erwartet keine Auswirkung sichtbar.

Tabelle 28: Ergebnisse der chemischen Analyse für Nitro-PAK

Nitro-PAK	DkZy-1	DkZy-2	DkP8-1	RkZy-1	RkZy-2	RkP8-1	RkP8-2	Blank
1-Pyr in ng/g	912,13	1063,29	1310,81	729,57	1004,89	1524,45	1426,61	n.d.
2-Pyr in ng/g	1774,06	1716,46	391,89	1108,06	765,89	135,28	155,96	n.d.
2-Fla in ng/g	221,76	237,97	243,24	400,44	358,50	348,60	293,58	n.d.
3-Fla in ng/g	460,25	506,33	585,59	n.d.	n.d.	n.d.	n.d.	n.d.
Summe	3368	3524	2531	2238	2129	2008	1876	0

1-Pyr: 1-Nitropyren 2-Pyr: 2-Nitropyren 2-Fla: 2-Nitrofluoranthen 3-Fla: 3-Nitrofluoranthen

n.d.: Wert unterhalb der Nachweisgrenze

In den getesteten Prüfzyklen war die Summe der Nitro-PAK im Dieselbetrieb um mehr als 1000 ng/g Partikel höher als im Rapsölbetrieb. Die deutlichsten Unterschiede ergaben sich für 2-Nitropyren sowie für 3-Nitrofluoranthen. Letztere Substanz wurde sowohl über die Gesamtzyklen, als auch in der Leerlaufphase mit Diesel festgestellt, jedoch nicht im Rapsölbetrieb. Im Extrakt der Partikel aus dem Dieselbetrieb wurden für die Einzelsubstanzen und in der Summe, außer für 2-Nitrofluoranthen, durchgehend höhere Werte je g Partikel ermittelt als im Extrakt der Partikel aus dem Rapsölkraftstoffbetrieb.

Die Ergebnisse der einzelnen Substanzen gleicher Testabläufe (Gesamtzyklus und Leerlauf) zeigen in ihrer Größenordnung bei den Nitro-PAK und den PAK gute Übereinstimmung (DkZy-1 und DkZy-2; RkZy-1 und RkZy-2; RkP8-1 und RkP8-2).

Bei den PAK beinhaltet in Summe der Extrakt der Proben DkZy-1 und DkZy-2 mehr PAK je g Partikel als die Proben RkZy-1 und RkZy-2 aus dem Rapsölbetrieb (Tabelle 29). Die Menge an PAK der Partikelemissionen im Rapsölbetrieb ist in der Leerlaufphase größer als bei den Proben der Gesamtzyklen. Die Summe der PAK aus dem Dieselbetrieb zeigen diesbezüglich ein umgekehrtes Bild (Abbildung 25).

Tabelle 29: Ergebnisse der chemischen Analyse für PAK

PAK in μg/g Partikel	DkZy-1	DkZy-2	DkP8-1	RkZy-1	RkZy-2	RkP8-1	RkP8-2	Blank
Acenaphthen	3,07	2,75	4,78	1,53	1,44	2,05	2,01	< 0,23
Acenaphthylen	6,81	5,69	4,01	7,96	10,55	15,91	18,69	< 0,2
Anthracen	77,89	86,85	24,22	12,22	18,59	28,01	22,90	0,41
Benz(a)anthracen	8,68	10,99	21,33	19,03	25,34	41,58	44,25	< 0,06
Benzo(a)pyren	1,01	1,64	6,16	12,99	15,80	23,99	22,60	< 0,29
Benzo(e)pyren	1,60	2,35	10,21	28,60	33,54	53,68	50,22	< 0,27
Benzo(g,h,i)perylen	< 1,36	< 1,64	2,28	24,51	38,57	70,14	65,01	< 1,48
Benzo(k)fluoranthen	3,47	4,75	19,15	59,22	71,60	124,79	123,27	< 0,29
Chrysen / Triphenylen	54,91	66,89	90,96	70,04	79,89	137,85	136,00	< 0,06
Coronen	< 1,36	< 1,64	< 1,45	13,54	30,74	70,11	65,48	< 1,48
Dibenz(a,h)anthracen	< 1,36	< 1,64	< 1,45	2,73	3,92	8,42	7,99	< 1,48
Fluoranthen	201,95	216,68	77,64	171,78	196,19	242,18	258,54	0,62
Fluoren	14,67	11,77	17,47	8,07	10,35	17,45	21,43	< 0,23
Indeno[1,2,3,c,d]pyren	< 1,19	< 1,44	1,41	16,88	28,61	69,00	66,34	< 1,3
Naphthalin	0,62	0,68	0,81	0,37	0,80	0,92	1,66	0,32
Perylen	1,47	1,65	1,52	4,55	5,86	9,10	9,21	< 0,15
Phenanthren	611,65	583,51	323,76	132,20	147,58	227,81	272,97	1,57
Pyren	251,00	266,03	190,31	204,43	231,05	311,96	339,97	0,19
Summe Benzo- (b,j,k)fluoranthene	2,20	3,36	12,73	42,80	51,46	94,10	93,22	< 0,14
Summe PAK	1241	1265	808	833	1001	1549	1621	3

BEACHTE: Bei der Interpretation der Ergebnisse ist zu berücksichtigen, dass sich die Analysen auf die mit Dichlormethan aus den Partikeln extrahierten PAK beziehen. Häufig werden auch alle im Abgas vorhandenen PAK (gasförmige und am Partikel gebundene PAK) analysiert

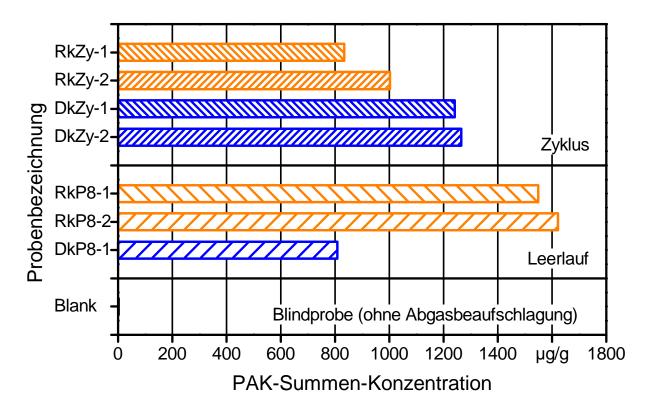


Abbildung 25: Vergleich der PAK-Summen-Konzentrationen in den Rapsöl- und Dieselabgaspartikelproben über den gesamten Zyklus, im Leerlauf sowie der Blindprobe

In Abbildung 26 sind die einzelnen PAK-Komponenten für den gesamten Prüfzyklus, in Abbildung 27 für den Leerlauf mit Rapsöl- und Dieselkraftstoff gegenübergestellt. Dabei zeigt sich, dass im Dieselkraftstoffbetrieb über den gesamten Prüfzyklus insbesondere Anthracen und Phenantren in deutlich höheren Konzentrationen in den Partikelextrakten wiederzufinden sind, als im Rapsölkraftstoffbetrieb. Mit Rapsölkraftstoff hingegen sind bei den PAK-Komponenten Benzo(a)pyren, Benzo(e)pyren, Benzo(g,h,i)perylen, Benzo(k)fluoranthen, Indeno[1,2,3,c,d]pyren und bei den Benzo(g,h,i)fluoranthenen höhere Konzentrationen in den Partikelextrakten feststellbar als im Dieselbetrieb (Abbildung 26). Im Leerlaufbetrieb sind beim Betrieb mit Rapsölkraftstoff mit Ausnahme von Phenanthren und Acenaphthen höhere Konzentrationen bei den einzelnen partikelgebundenen PAK zu verzeichnen als im Dieselbetrieb (Abbildung 27).

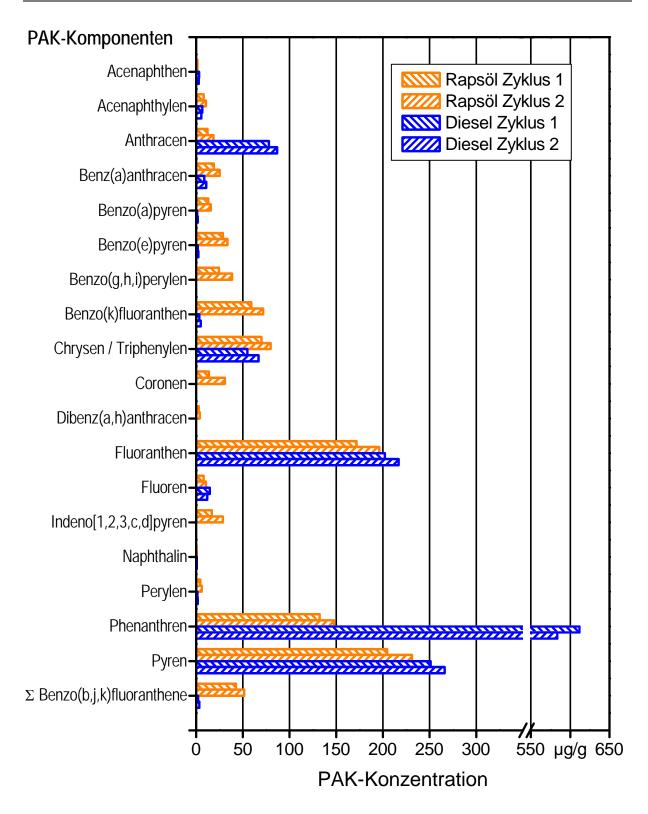


Abbildung 26: Vergleich der PAK-Konzentrationen in den Proben aus den Gesamtzyklen beim Betrieb mit Rapsöl- und Dieselkraftstoff

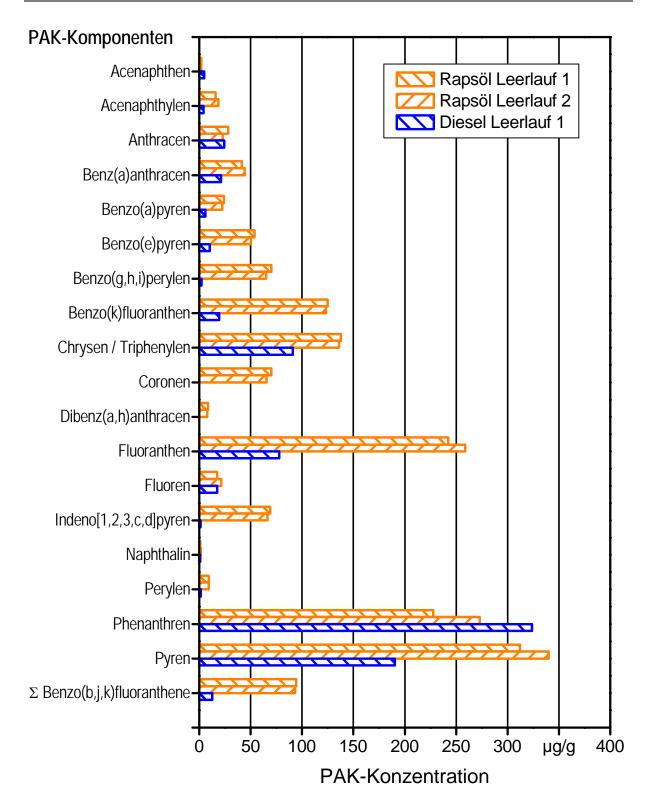


Abbildung 27: Vergleich der PAK-Konzentrationen in den Proben aus den Leerlaufphasen beim Betrieb mit Rapsöl- und Dieselkraftstoff

6 Diskussion

Die mutagene Wirkung der Probenextrakte sowohl aus dem Betrieb mit Rapsöl- als auch mit Dieselkraftstoff ist insgesamt sehr gering und liegt teilweise an der unteren Nachweisgrenze, so dass der beobachtete Anstieg der Revertantenanzahlen nicht immer eindeutig dem Extrakt zurechenbar ist.

Bei den vorliegenden Untersuchungen wurden ca. 30 mg Partikel je Probe verwendet. Für die Gewinnung dieser Proben wurden bei den Prüfzyklen jeweils ca. 0,9 m³ Abgas, bezogen auf Normbedingungen (anteilig im verdünnten Abgas) in 100 min über zwei hintereinander angeordnete Planfilter gesaugt. Im Leerlauf betrug das abgesaugte Abgasvolumen ca. 1,0 m³ bei Dieselbetrieb und ca. 0,4 m³ bei Rapsölbetrieb bei einer Absaugdauer von 30 bzw. 60 min. Für größere Probenmengen müsste entweder die Absaugzeit erhöht bzw. mehrere beladene Filter aus Wiederholungszyklen zu einer Probe vereint werden. Da es keine speziellen Vorschriften zur Probenahme von Abgaspartikeln für die Untersuchung des mutagenen Potenzials gibt, erfolgte die Probenahme in Anlehnung an die Partikelmassebestimmung gemäß der Richtlinie 97/68/EG im verdünnten Abgas bei max. 52 °C (siehe Kapitel 4.3.5). Dies erschien sinnvoll, da es sich hierbei um ein standardisiertes Verfahren handelt und die Verdünnung des Abgases den realen Verhältnissen des Motorbetriebs unter Umgebungsbedingungen nahe kommt.

Ein Vergleich der Ergebnisse zwischen Rapsöl- und Dieselkraftstoff zeigt, dass das mutagene Potenzial der Partikel beim Betrieb mit Rapsölkraftstoff über den gesamten Testzyklus etwa 10 bis 60 % und im Leerlaufbetrieb etwa 50 bis 80 % niedriger ist als mit Dieselkraftstoff. Bezogen auf ein einheitliches Abgasvolumen ist die Mutagenität der Partikel beim Betrieb mit Rapsölkraftstoff im Vergleich zum Dieselbetrieb über den gesamten Prüfzyklus um ca. 30 bis 70 % niedriger und im Leerlauf zwischen ca. 20 % höher und 50 % niedriger.

Im Unterschied zu den vorliegenden Ergebnissen ermittelten BÜNGER et al. (2007) [1] an einem nicht für den Betrieb mit Rapsölkraftstoff angepassten Motor anderer Bauart und dem dafür vorgeschriebenen (im Vergleich zu den vorliegenden Untersuchungen unterschiedlichen) Prüfzyklus (ESC test cycle) mit einem nicht näher definierten Rapsölkraftstoff und einem abweichenden Partikelprobenahmeverfahren (im unverdünnten, gekühlten Abgas), eine um den Faktor 5 bis 18 (Rapsöl nicht vorgewärmt) bzw. eine um den Faktor 13 bis 59 (Rapsöl auf 70 °C vorgewärmt) höhere Mutagenität von Rapsölkraftstoff im Vergleich zu Dieselkraftstoff (Tabelle 30). Es ist bekannt, dass der Motortyp, das Motor- und Abgasreinigungssystem, die verwendeten Testzyklen, die Betriebsbedingungen, die Kraftstoffqualitäten und die Probenahmebedingungen einen großen Einfluss auf die Zusammensetzung und damit auch auf die mutagene Wirkung der Partikel im Abgas haben [15]. Somit lassen sich die unterschiedlichen Ergebnisse verschiedener Untersuchungen erklären. Eine verallgemeinernde Aussage über das mutagene Potenzial verschiedener Kraftstoffe im Vergleich ist deshalb derzeit nicht möglich, da die Ergebnisse der einzelnen Studien immer nur für die jeweils gewählten Rahmenbedingungen gelten. Hierzu ist eine breitere Datenbasis erforderlich.

Als Versuchsträger diente ein Deutz-Fahr Traktor der Abgasstufe II, der durch ein Ein-Tank-System an den Betrieb mit Rapsölkraftstoff angepasst war. Bei der Verwendung von Dieselkraftstoff in einem auf Rapsölkraftstoffbetrieb umgerüsteten Motor ist mit einer Veränderung des Emissionsverhaltens im Vergleich zum Zustand vor der Umrüstung zu rechnen. Dies lässt sich auch anhand der Ergebnisse der wiederkehrenden Emissionsmessungen erkennen (Kapitel 5.1.1). Möglicherweise könnten sich deshalb bei einem Vergleich des mutagenen Potenzials eines Serien-Dieselmotors mit Dieselkraftstoff mit einem optimierten Pflanzenölmotor mit Rapsölkraftstoff andere Ergebnisse ergeben. Allerdings beeinflusst eine Umrüstung eines konventionellen Serien-Dieselmotors auf Rapsölkraftstoff den Dieselbetrieb meist weniger stark als die Verwendung von Rapsölkraftstoff in einem nicht umgerüsteten modernen konventionellen Dieselmotor, wo es zu einer vermehrt unvollständigen Verbrennung durch schlechte Einspritzstrahlqualität und Wandanlagerungen des Kraftstoffs im Brennraum kommen kann.

Tabelle 30: Übersicht bisheriger Untersuchungen zur Mutagenität von Rapsölkraftstoff

Quelle	STALDER et al. (1994) [14]	BÜNGER et al. (2007) [1]	Krist et al. (2007) [6]	Vorliegende Untersuchung
Testzyklus bei Probenahme	Volllast	13-Stufen Test	13-Stufen-Test	8-Stufen-Test und Leerlauf
Maschine/ Fahrzeug/Motor	Traktor KHD- Wirbelkammer- motor F4L912W	Lkw Mercedes- Benz Motor OM 906 LA, EU- RO III	Lkw DAF CF 85, EURO V	Traktor mit Deutz-Motor BF6M1013EC, Abgasstufe II
Motoranpas- sung/ Umrüs- tung	Gilt als pflanzen- öltauglich	mit und ohne Kraftstoffheizung (70 °C) im Tank	Zweitank-System "Bioltec"	Ein-Tank-System "Hausmann"
Kraftstoff	Rapsöl und Diesel	Rapsöl und Diesel	Rapsöl-/Diesel- mischung und Diesel	Rapsölkraftstoff (DIN V 51605), Diesel (EN 590)
Mutagenität bezogen auf gleiche Masse extrahierter Partikel			0,4 bis 0,6 x DK	8-Stufen-Zyklus: 0,4 bis 0,9 x DK Leerlauf: 0,2 bis 0,5 x DK
Mutagenität bezogen auf gleiches Volu- men gefilterten Abgases	0,1 bis 4,0 x DK	RK nicht vorgeheizt: 5 bis 18 x DK RK vorgeheizt: 13 bis 59 x DK	-	8-Stufen-Zyklus: 0,3 bis 0,7 x DK Leerlauf: 0,5 bis 1,2 x DK

DK = Dieselkraftstoff RK = Rapsölkraftstoff

Um mögliche Ursachen für die mutagenen Wirkungen der Abgaspartikel herauszufinden, wurde eine chemische Analyse der Abgaspartikel hinsichtlich polyzyklisch aromatischer Kohlenwasserstoffe (PAK) sowie im speziellen auch ausgewählter nitrierter PAK (Nitro-PAK) durchgeführt. Nitro-PAK stehen in Verdacht einen wesentlichen Anteil an der mutagenen Aktivität der Partikel zu haben.

Die Summe der Nitro-PAK der Partikelproben weist trotz geringerer NO_x-Emissionen, die die Bildung von Nitro-PAK begünstigen (Kapitel 3), eine deutlich höhere Konzentration bei Dieselbetrieb im Vergleich zum Rapsölbetrieb auf. Dies ist insbesondere auf die erhöhten Konzentrationen der stark mutagen wirksamen Komponenten 2-Nitropyren und 3-Nitrofluoranthen zurückzuführen. Letztere wurde in allen Betriebsarten und Testverfahren (Zyklus und Leerlauf) mit Diesel festgestellt, jedoch nicht im Rapsölbetrieb. Die höheren Revertantenanzahlen im Dieselbetrieb können somit unter anderem auch auf die erhöhten Konzentrationen an Nitro-PAK zurückgeführt werden.

Die Summenkonzentration der PAK hingegen zeigt kein eindeutiges Bild. Die Menge an PAK im Rapsölbetrieb ist während des Leerlauftests höher als im Zyklustest, der Dieselbetrieb zeigt diesbezüglich ein umgekehrtes Bild, obwohl in beiden Fällen die Netto-Revertantenanzahl im Leerlauf höher liegt als über den gesamten Zyklus (Abbildung 27). Dies kann darauf hindeuten, dass die Nitro-PAK einen stärkeren Einfluss auf die Mutagenität haben, als die PAK-Komponenten und bestätigt somit bisherige Ergebnisse beim Betrieb mit Dieselkraftstoff (Kapitel 3).

Alle Ergebnisse zeigen eine gute Übereinstimmung bei den Wiederholungsmessungen. Lediglich bei Rapsölbetrieb im Leerlauf kam es mit dem Bakterienstamm TA100 mit S9-Mix-Zugabe zu größeren Abweichungen bei den Netto-Revertanten (Tabelle 25). Auch die Ergebnisse bei den Nitro-PAK und den PAK stimmen bei den gleichen Testabläufen (Zyklus / Leerlauf) in ihrer Größenordnung gut überein. Dies deutet auf eine gute Wiederholbarkeit der Untersuchungen hin. Anhand der Ergebnisse mit der Blindprobe (Blank), die genauso wie alle anderen Proben behandelt, jedoch nicht mit Abgas beaufschlagt wurde, konnte festgestellt werden, dass keine methodisch bedingte sekundäre Verunreinigung mit mutagenen Stoffen bei der Partikelprobenahme erfolgt war.

Folgerungen

Das mutagene Potenzial von Abgaspartikeln beim Betrieb mit Rapsölkraftstoff ist bei den vorliegenden Untersuchungen im rapsölkraftstofftauglichen Traktor sowohl über den gesamten Prüfzyklus (97/68/EG) als auch im Leerlaufbetrieb signifikant niedriger als mit Dieselkraftstoff. Die Partikelproben aus dem Leerlaufbetrieb weisen mit Rapsölkraftstoff ein höheres mutagenes Potenzial auf als über den gesamten Prüfzyklus gemittelt.

Die vorliegenden Ergebnisse werden durch eine aktuelle Untersuchung von KRIST et al. (2007) [6] bestätigt, eine weitere aktuelle Untersuchung von BÜNGER et al. (2007) [1] weist dagegen auf ein zum Teil deutlich höheres mutagenes Potenzial von Rapsölkraftstoff hin. Die Unterschiede liegen womöglich in den jeweiligen Versuchsbedingungen begründet. Eine Aussage zur Mutagenität eines Kraftstoffs sollte nur unter Angabe der exakten Versuchsbedingungen (z. B. Probenahme, Kraftstoffqualität) erfolgen. Somit ist eine verallgemeinernde Aussage zur mutagenen und der davon abgeleiteten kanzerogenen Wirkung von mit Rapsölkraftstoff betriebenen Motoren gemäß des derzeitigen Kenntnisstandes nicht ohne weiteres möglich.

Zukünftig gilt es verstärkt die Beschaffenheit und Zusammensetzung der Partikel zu berücksichtigen, um die stark mutagen wirkenden Komponenten und Eigenschaften zu identifizieren, um

danach kraftstoff- und motorspezifische Maßnahmen zu deren Minderung ergreifen zu können. Dies erfordert umfangreiche weitere Untersuchungen, zumal das Zusammenwirken verschiedener Abgasbestandteile zu einer Verstärkung oder Minderung der mutagenen Aktivität von Einzelkomponenten führt.

Zukünftige Motorkonzepte und Abgasnachbehandlungssysteme sowie die Weiterentwicklung pflanzenöltauglicher Motoren in Verbindung mit der Absenkung des Grenzwerts für Stickstoffoxidemissionen bergen ein großes Potenzial zur Reduzierung der mutagenen Wirkung von Abgasemissionen sowohl beim Betrieb mit Dieselkraftstoff als auch mit Rapsölkraftstoff.

Das Technologie- und Förderzentrum (TFZ) wird auf diesem Gebiet weitergehende Forschungsarbeiten durchführen.

Zusammenfassung

Die Nutzung von Rapsölkraftstoff in pflanzenöltauglichen Traktoren kann einen erheblichen Beitrag zum Klimaschutz leisten. Darüber hinaus bietet die Nutzung von Rapsölkraftstoff weitere Vorteile hinsichtlich des Boden- und Gewässerschutzes, der Erhöhung der Versorgungssicherheit und Steigerung der Wertschöpfung in der Landwirtschaft durch heimische Futtermittel- und Kraftstofferzeugung. Aufgrund der Energiesteuerbefreiung von Rapsölkraftstoff im Bereich der Landwirtschaft bietet sich in vielen Fällen auch die Möglichkeit der Kraftstoffkosteneinsparung im Vergleich zur Nutzung von fossilem Dieselkraftstoff. Voraussetzung für den zuverlässigen Betrieb eines pflanzenöltauglichen Dieselmotors mit Rapsölkraftstoff ist ein hochwertiger Kraftstoff, der die Anforderungen der DIN V 51605 erfüllt. Rapsölkraftstofftaugliche Traktoren, die direkt von der Landmaschinenindustrie angeboten werden, befinden sich derzeit in der Markteinführung, wodurch die Bedeutung von Rapsölkraftstoff noch weiter zunehmen wird.

Aufgrund der verstärkten Nutzung von Rapsölkraftstoff in der Praxis gewinnen derzeit nicht hinreichend geklärte Fragestellungen bezüglich der Emissionen von rapsölkraftstoffbetriebenen Dieselmotoren zunehmend an Bedeutung. Dabei spielt auch die mutagene und kanzerogene Wirkung der Abgasemissionen auf den menschlichen Organismus eine wesentliche Rolle. Einzelne stichpunktartige Forschungsarbeiten zur mutagenen Wirkung von Partikelemissionen aus rapsölkraftstoffbetriebenen Motoren kommen zu gegensätzlichen Ergebnissen. Aufgrund von Medienberichten, wonach beim Einsatz von Rapsölkraftstoff im Vergleich zu Dieselkraftstoff ein extrem erhöhtes Krebspotenzial bestehe, herrscht in der Öffentlichkeit eine große Verunsicherung hinsichtlich der Gesundheitsgefährdung durch Rapsölkraftstoffemissionen.

Deshalb war es Ziel dieser Untersuchung, einen auf den Betrieb mit Rapsölkraftstoff umgerüsteten Traktor hinsichtlich der Mutagenität der Partikelemissionen zu überprüfen. Zur besseren Interpretation der Ergebnisse wurde zusätzlich auch die Zusammensetzung der Partikel hinsichtlich mutagen und kanzerogen relevanter polyzyklischer aromatischer Kohlenwasserstoffe (PAK) sowie nitrierter PAK (Nitro-PAK) bestimmt.

Untersucht wurden Proben von Partikelemissionen, die an Filterplättchen gemäß des Prüfzyklus nach Richtlinie 2000/25/EG unter definierten Bedingungen abgeschieden wurden. Die Proben setzten sich aus Einzelproben der insgesamt 8 Prüfphasen innerhalb des Motorkennfelds zusammen. Weiterhin wurden auch Proben bei Leerlaufbetrieb gesondert untersucht. Als Versuchsträger diente ein Deutz-Fahr Traktor, der mit einem Ein-Tank-System auf den Betrieb mit Rapsölkraftstoff umgerüstet war. Die Partikelprobenahme erfolgte am Prüfstand des Technologie- und Förderzentrums (TFZ), Straubing beim Betrieb des Traktors mit normgerechtem Rapsöl- und Dieselkraftstoff. Die Versuchsbedingungen bei den Partikelprobenahmen wurden mittels einer kontinuierlichen Datenaufzeichnung erfasst.

Die Erbgut verändernde Wirkung (Mutagenität) sowie die Konzentrationen der polyzyklischen aromatischen Kohlenwasserstoffe (PAK) und Nitro-PAK der insgesamt 8 Partikelproben wurden am bifa Umweltinstitut, Augsburg mithilfe des Ames-Tests, bzw. mittels chemischer Analyse bestimmt.

Die mutagenen Wirkungen aller Probenextrakte liegen trotz einer Partikelprobenmenge von jeweils ca. 30 mg auf sehr geringem Niveau und teilweise an der unteren Nachweisgrenze, so dass der beobachtete Anstieg der Revertantenanzahl nicht immer eindeutig dem Extrakt zurechenbar ist.

Ein Vergleich der Ergebnisse zwischen Rapsöl- und Dieselkraftstoff zeigt, dass das mutagene Potenzial der Partikel beim Betrieb mit Rapsölkraftstoff über den gesamten Testzyklus etwa 10 bis 60 % und im Leerlaufbetrieb etwa 50 bis 80 % niedriger ist als mit Dieselkraftstoff. Bezogen auf ein einheitliches Abgasvolumen ist die Mutagenität der Partikel beim Betrieb mit Rapsölkraftstoff im Vergleich zum Dieselbetrieb über den gesamten Prüfzyklus um ca. 30 bis 70 % niedriger und im Leerlauf zwischen ca. 20 % höher und 50 % niedriger. Hierbei ist zu berücksichtigen, dass sich beim Betrieb eines Serien-Dieselmotors mit Dieselkraftstoff (anstelle des umgerüsteten Motors) abweichende Ergebnisse ergeben können.

Im Unterschied zu den vorliegenden Ergebnissen ermittelten beispielsweise BÜNGER et al. (2007) [1] an einem nicht für den Betrieb mit Rapsölkraftstoff angepassten Motor anderer Bauart und anderem Prüfzyklus mit einem nicht näher definierten Rapsölkraftstoff und einem abweichenden Partikelprobenahmeverfahren, eine deutlich höhere Mutagenität von Rapsölkraftstoff im Vergleich zu Dieselkraftstoff. Die Unterschiede der Ergebnisse liegen möglicherweise in den jeweiligen Versuchsbedingungen begründet, so dass eine Aussage zur Mutagenität eines Kraftstoffs nur unter Angabe der exakten Versuchsbedingungen erfolgen sollte.

Die Ergebnisse der chemischen Partikelanalyse ergaben, dass die Summe der Nitro-PAK der Partikelproben eine deutlich höhere Konzentration bei Dieselbetrieb im Vergleich zum Rapsölbetrieb aufweisen. Insbesondere die stark mutagen wirksamen Komponenten 2-Nitropyren und 3-Nitrofluoranthen sind bei den Proben aus dem Dieselkraftstoffbetrieb in größerer Menge zu finden. Die höheren Revertantenanzahlen im Dieselbetrieb können somit zumindest teilweise auf die erhöhten Konzentrationen an Nitro-PAK zurückgeführt werden.

Der Vergleich der PAK-Summenkonzentrationen hingegen zeigt kein eindeutiges Bild. Die Menge an den Partikeln angelagerter PAK war im Rapsölbetrieb während des Leerlaufs höher als im Zyklus. Der Dieselbetrieb zeigte diesbezüglich ein umgekehrtes Bild, obwohl in beiden Fällen die Netto-Revertantenanzahl im Leerlauf höher lag als über den gesamten Zyklus. Dies kann darauf hindeuten, dass die Nitro-PAK einen stärkeren Einfluss auf die Mutagenität haben, als die PAK-Komponenten und bestätigt somit bisherige Ergebnisse aus der Literatur.

Die Ergebnisse der vorliegenden Untersuchung belegen eine geringere Mutagenität der Partikelemissionen beim Einsatz von normgerechtem Rapsölkraftstoff in pflanzenöltauglichen Motoren im Vergleich zum Einsatz von Dieselkraftstoff. Die in der Vergangenheit in Medien getroffenen Aussagen, dass die Emissionen bei der Verwendung von Rapsölkraftstoff generell mehrfach mutagen bzw. krebserregend sind als mit Dieselkraftstoff, konnten eindeutig widerlegt werden.

Quellenverzeichnis

- [1] BÜNGER, J.; KRAHL, J.; MUNACK, A.; RUSCHEL, Y.; SCHRÖDER, O.; EMMERT, B.; WEST-PHAL, G.; MÜLLER, M.; HALLIER, E.; BRÜNING, T. (2007): Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel. Archives Toxicology, Vol. 81, Nr. 8, S. 599-603
- [2] EUROPÄISCHE UNION (2000): Richtlinie 2000/25/EG des europäischen Parlaments und des Rates über Maßnahmen zur Bekämpfung der Emission gasförmiger Schadstoffe und luftverunreinigender Partikel aus Motoren, die für den Antrieb von land- und forstwirtschaftlichen Zugmaschinen bestimmt sind, und zur Änderung der Richtlinie 74/150/EWG. ABl. Nr. L 173 vom 12.07.2000, zuletzt geändert durch Richtlinie 2005/13/EG (ABl. Nr. L 55 v. 01.03.2005) der Kommission
- [3] EUROPÄISCHE UNION (1997): Richtlinie 97/68/EG des europäischen Parlaments und des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Maßnahmen zur Bekämpfung der Emission von gasförmigen Schadstoffen und luftverunreinigenden Partikeln aus Verbrennungsmotoren für mobile Maschinen und Geräte. ABl. Nr. L 59 vom 27.02.1998, zuletzt geändert durch Richtlinie 2004/26/EG (ABl. Nr. L 225 vom 25.06.2004) des Europäischen Parlaments u. des Rates
- [4] KIELHORN, J.; WAHNSCHAFFE, U.; MANGELSDORF, I. (2003): Selected Nitro- and Nitro-oxy-polycyclic aromatic hydrocarbons. Environmental Health Criteria 229, WHO, Geneva
- [5] Krahl, J.; Munack, A.; Schröder, O.; Bünger, J. (2003): Influence of biodiesel and different designed diesel fuels on the exhaust gas emissions and health effects. Society of Automotive Engineers, SAE Technical Paper, 2003-01-3199, S. 1-9
- [6] Krist, H.; Fischer, H.; Hoppenheidt, K. (2007): Prüfung der Mutagenität von Inhaltsstoffen partikulärer Abgasbestandteile im Ames-Test. Bericht für bioltec evolv-ram GmbH. Augsburg: bifa Umweltinstitut, 19 Seiten
- [7] LENGE, R. (2006): Mehr Durst als im Prospekt. In: top agrar, Nr. 7, S. 68-71
- [8] MAHON, G. A. T.; MIDDLETON, B.; ROBINSON, W.D.; GREEN, M. H. L.; MITCHELL, I. DE G.; TWEATS, D. J. (1989): Analysis of data from microbial colony assays. In: KIRKLAND, D. J. (Hrsg.): Statistical evaluation of mutagenicity test data. Cambridge University Press: Cambridge, S. 26-65
- [9] MARON, D. M.; AMES, B. N. (1983): Revised methods for the Salmonella mutagenicity test. Mutation Research, Jg. 113, Nr. 3-4, S. 173-215
- [10] MOLLENHAUER, K. (2002): Handbuch Dieselmotoren. 2. Auflage. Berlin, Heidelberg, New York: Springer, 1069 Seiten
- [11] MORTELMANS, K.; ZEIGER, E. (2000): The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455, S. 29-60
- [12] MÜCKE, W.; HUBER, W.; HUNSTEIN, R.; NICKEL, T.; KOCH, M.; WEINDL, J.; BRAUN, A. (2002): Mutagenität und Nitro-PAK-Gehalt von Feinstaub Untersuchungen an einem verkehrsbelasteten Standort. Endbericht zum Forschungsvorhaben im Auftrag des Bayerischen Landesamts für Umwelt. Altendorf bei Bamberg: M. & D. Gräbner, ISBN 3-932108-13-2

- [13] NYLUND, N.-O.; ERKKILÄ, K.; LAPPI, M.; IKONEN, M. (2004): Transit Bus Emission Study: Comparison of Emissions from Diesel and Natural Gas Buses. VTT RESEARCH REPORT PRO3/P5150/04
- [14] STALDER, K.; GERHARD, V.; KRAHL, J. (1994): Zur kanzerogenen Wirkung von Rußen aus Dieselmotoren im Betrieb mit Rapsöl, RME und Dieselkraftstoff. In: C.A.R.M.E.N. e. V. (Hrsg.): Emissionen von Pflanzenöl-Kraftstoffen und ihre Umweltwirkungen, Rimpar: C.A.R.M.E.N. e.V., S. 30-35
- [15] WACHTER, W. (2007): Die Umweltrelevanz des Dieselmotors. Dozentenvorlesung im Rahmen der Lehrveranstaltung "Ausgewählte Kapitel der Verbrennungskraftmaschine" Technische Universität Graz, Institut für Verbrennungskraftmaschinen und Thermodynamik, 35 Seiten; Available at: http://fvkma.tu-graz.ac.at/. Accessed at 14th October 2007
- [16] WEILNHAMMER, U. (2007): Abgase und Pflanzenkraftstoffe neueste Untersuchungen und Lösungen zum Thema "Mutagenität". In: NOVA-INSTITUT GMBH (Hrsg.): Erster Internationaler Kongress zu Pflanzenöl-Kraftstoffen. Tagungsband zum Ersten Internationalen Kongress zu Pflanzenöl-Kraftstoffen, Messe Erfurt, 6.-7. September 2007. Hürth: nova-Verlag, S. 205-225, ISBN 13987-3-9805840-8-1

Anhang

Anhang 1: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante RkZy-1

		Prüfp		Prüf _l		Prüfp		Prüf _j		Prüfp 5		Prüf _j		Prüfj		Prüfp 8	•
Kürzel	Einheit	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.
T_{LU1}	°C	37,6	0,7	40,0	0,0	40,0	0,0	40,0	0,0	40,3	0,5	43,0	0,0	42,0	0,0	40,3	0,5
T_{LU2}	°C	46,9	0,3	46,1	0,2	44,5	0,2	41,1	0,3	46,4	0,7	46,7	0,3	44,6	0,3	36,3	0,3
t	s	900		900		901		601		600		600		600		901	
Bh		1073		1073		1074		1075		1076		1076		1077		1078	
DH1		aus		aus		aus		aus		aus		aus		aus		aus	
DH2		ein		ein		ein		ein		ein		ein		ein		ein	
T_{LA1}	°C	30,6	0,2	31,1	0,3	31,2	0,4	30,0	0,1	31,1	0,3	31,7	0,1	32,0	0,1	30,8	0,2
T_{LL}	°C	59,1	0,5	50,9	0,6	46,4	0,5	40,5	0,3	47,1	0,7	44,3	0,8	41,3	0,3	33,5	0,2
p_{LL}	mbar	182	1	157	1	137	1	110	0	152	1	133	1	118	0	96	0
T_{KT1}	°C	47,6	1,4	47,1	1,2	45,8	1,3	44,5	0,5	47,5	1,0	47,8	0,8	46,7	0,5	42,9	0,4
T_{KT2}	°C	43,6	2,0	44,1	1,5	42,4	1,8	42,4	0,9	45,3	0,9	45,8	0,8	45,3	0,6	42,2	0,3
T_{KE}	°C	79,5	0,5	74,6	0,5	71,5	0,5	67,2	0,4	71,3	0,8	69,7	0,5	66,8	0,4	63,3	0,5
T_{KR}	°C	75,5	0,5	71,4	0,5	68,4	0,5	65,0	0,0	68,0	0,9	66,3	0,5	63,5	0,5	62,0	0,0
В	1/h	35,0	0,1	28,4	0,2	23,6	0,1	13,5	0,1	23,5	0,0	18,8	0,2	14,2	0,1	2,5	0,1
T _{Oel}	°C	93,0	0,4	87,2	0,3	84,2	0,2	79,9	0,2	89,4	0,6	86,9	0,4	82,6	0,1	75,3	0,1
T_{W}	°C	98,9	0,4	92,9	0,4	90,5	0,5	87,0	0,0	97,2	0,8	92,8	0,4	89,8	0,4	84,0	0,0
n	rpm	2098	2	2080	2	2082	2	2087	1	1404	1	1400	2	1402	1	844	3
P_{TR}	%	100	0	80	1	64	1	31	0	100	0	78	1	56	0	10	1
$M_{\rm Z}$	Nm	467	2	348	3	236	1	44	0	559	1	422	1	281	1	0	
n_{T2}	rpm	2099	2	2079	2	2083	2	2087	2	1404	2	1402	2	1402	2	846	
P_{Z}	kW	107,8	0,4	79,5	0,9	54,1	0,3	10,2	0,1	86,3	0,2	65,1	0,1	43,3	0,1	0,0	
G _{FUEL}	kg/h	32,66		25,70		19,86		11,35		22,29		17,34		12,72		2,28	
T_{AZ1}	°C	598,4	1,3	519,0	1,7	463,7	1,5	328,7	0,3	572,1	0,9	499,4	1,6	413,4	0,7	150,6	0,5
T_{AZ2}	°C	596,4	0,9	515,8	1,2	450,6	1,4	318,0	0,6	564,3	2,5	485,7	1,6	396,1	0,8	132,4	0,3
T_{AZ3}	°C	582,8	0,7	517,8	1,5	465,1	2,4	325,5	0,7	558,0	1,1	495,3	1,1	413,8	0,7	134,8	0,3
T_{AZ4}	°C	591,2	1,0	512,5	1,8	444,9	1,0	317,7	0,3	561,9	3,0	483,1	1,3	392,2	0,5	144,1	0,5
T_{AZ5}	°C	587,3	0,9	519,9	1,5	448,6	0,9	326,1	0,5	573,8	1,5	494,4	2,1	400,8	0,6	165,6	0,2
T_{AZ6}	°C	544,2	1,5	478,2	1,8	414,3	2,1	294,7	0,7	520,6	2,4	447,8	1,3	364,9	0,6	149,4	0,3
T_{AE}	°C	445,5	0,5	392,1	0,8	344,4	0,8	244,8	1,2	420,9	2,3	369,3	0,7	301,6	0,2	103,2	0,1

Anhang 1: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante RkZy-1 (Fortsetzung)

		Prüfp 1		Prüfp		Prüfp		Prüfp	ohase I	Prüfp 5	ohase 5	Prüf _f	ohase	Prüfj		Prüfj 8	•
Kürzel	Einheit	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.								
T_{AA}	°C	409,7	0,5	363,8	1,3	319,3	0,3	235,4	3,3	368,7	4,2	334,6	1,7	276,8	1,3	99,8	0,7
V_{LV}	m³	0,429		0,431		0,458		0,336		0,267		0,272		0,310		0,273	
T_{LV}	°C	27,7	0,1	29,5	0,4	31,0	0,4	31,1	0,1	32,5	0,1	33,2	0,3	33,3	0,1	33,5	0,0
$p_{\rm LV}$	mbar	55,78		56,17		59,06		67,01		48,73		50,22		59,54		28,15	
T_{LVE}	°C	24,1	0,1	24,9	0,4	25,6	0,4	25,4	0,1	26,2	0,2	26,3	0,2	26,3	0,1	26,8	0,2
T_{MV}	°C	50,2	1,4	49,8	1,1	50,3	1,1	48,3	2,5	50,0	1,1	50,2	1,2	50,1	0,8	50,2	1,2
T_{MF1}	°C																
T_{MF2}	°C	42,8	0,6	44,4	0,5	43,4	0,8	43,0	1,0	43,9	1,8	45,8	1,5	45,3	1,1	44,3	0,5
V_{MA}	m³	0,551		0,551		0,581		0,417		0,346		0,349		0,383		0,499	
T_{MA}	°C	27,8	0,2	29,9	0,3	31,0	0,4	31,1	0,0	32,1	0,1	33,0	0,2	33,1	0,1	33,0	0,0
p_{MA}	mbar	-322,4		-340,0		-327,5		-319,4		-341,3		-339,4		-328,2		-344,7	

Anhang 2: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante RkZy-2

		Prüfp 1		Prüfp	ohase 2	Prüfp		Prüfi		Prüfp 5	ohase 5	Prüfp	_		phase	Prüfj 8	
Kürzel	Einheit	Mittelwert	Standardabw.														
T_{LU1}	°C	39,6	0,5	40,3	0,5	40,0	0,0	39,3	0,5	41,7	0,5	43,0	0,0	42,0	0,0	39,1	0,4
T_{LU2}	°C	47,6	0,4	45,9	0,2	44,8	0,2	40,9	0,2	47,3	0,7	46,0	0,3	44,1	0,3	36,8	0,5
t	s	901		901		900		601		599		600		600		900	
Bh		1073		1074		1075		1075		1076		1076		1077		1078	
DH1		aus		aus		aus		aus		aus		aus		aus		aus	
DH2		ein		ein		ein		ein		ein		ein		ein		ein	
T_{LA1}	°C	31,6	0,4	31,0	0,3	31,6	0,2	30,1	0,2	31,5	0,2	31,7	0,1	32,0	0,2	30,1	0,1
T_{LL}	°C	57,7	1,1	51,9	0,7	47,3	0,7	39,9	0,4	47,9	0,9	43,7	0,7	41,3	0,4	33,9	0,4
p_{LL}	mbar	180	1	158	1	138	0	110	0	152	0	134	1	118	0	96	0
T_{KT1}	°C	50,8	0,7	50,1	0,8	49,0	0,5	46,2	0,4	50,3	0,8	49,3	0,5	48,3	0,5	42,0	0,0
T_{KT2}	°C	48,1	0,5	48,2	0,8	47,2	0,6	44,9	0,3	48,7	0,6	47,9	0,4	46,9	0,3	41,4	0,1
T_{KE}	°C	80,1	0,4	75,9	0,4	72,9	0,4	67,3	0,5	73,5	0,8	70,0	0,0	67,0	0,0	62,9	0,4
T_{KR}	°C	76,8	0,5	72,8	0,5	69,9	0,4	65,2	0,4	69,8	0,8	67,0	0,0	64,0	0,0	61,0	0,0
В	l/h	34,7	0,2	28,5	0,1	23,9	0,1	13,5	0,1	23,5	0,0	18,9	0,2	14,3	0,1	2,5	0,1
T _{Oel}	°C	92,3	0,3	87,6	0,2	84,7	0,1	79,4	0,0	91,4	0,1	85,9	0,1	82,5	0,1	75,3	0,1
T_{W}	°C	98,5	0,5	93,6	0,5	91,1	0,4	87,0	0,0	99,0	0,0	92,7	0,5	90,0	0,0	84,0	0,0
n	rpm	2101	1	2077	2	2081	2	2087	2	1404	2	1400	1	1401	1	843	3
P_{TR}	%	99	1	80	0	65	0	31	0	100	0	79	1	57	1	10	1
$M_{\rm Z}$	Nm	460	5	351	1	242	1	44	0	564	1	423	1	283	1	0	
n_{T2}	rpm	2101	3	2077	2	2081	2	2086	2	1405	2	1400	0	1402	2	846	
P_{Z}	kW	106,4	1,0	80,2	0,2	55,3	0,3	10,1	0,1	87,2	0,2	65,2	0,1	43,7	0,2	0,0	
G _{FUEL}	kg/h	32,68		25,61		20,36		11,38		22,30		17,28		12,69		2,32	
T_{AZ1}	°C	595,3	1,6	519,6	0,9	468,8	2,2	327,8	0,5	574,2	0,7	496,8	1,2	412,9	0,7	152,0	0,4
T_{AZ2}	°C	592,4	1,4	517,0	1,4	453,6	1,8	316,2	0,5	570,1	1,2	482,2	1,7	396,9	1,0	133,1	0,3
T_{AZ3}	°C	580,0	1,0	518,5	0,9	469,9	1,4	323,0	0,6	559,2	0,8	495,2	1,5	414,5	1,0	135,8	0,4
T_{AZ4}	°C	587,8	1,2	514,8	0,9	448,0	1,3	317,1	0,3	570,8	0,9	479,1	1,0	393,4	0,9	144,1	0,4
T_{AZ5}	°C	584,5	1,0	522,4	1,0	450,7	0,9	324,9	0,4	578,7	0,7	490,4	1,0	402,5	0,8	165,9	0,3
T_{AZ6}	°C	540,6	1,3	481,0	0,9	420,2	1,7	294,0	0,5	525,5	1,2	445,4	0,7	367,6	0,5	149,2	0,3
T_{AE}	°C	442,7	0,6	393,7	0,4	347,4	0,6	242,4	0,1	426,9	0,8	367,3	0,6	301,7	0,4	103,6	0,1

Anhang 2: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante RkZy-2 (Fortsetzung)

		Prüfp 1		Prüfp		Prüfp		Prüfp	_	Prüfp 5	ohase 5	Prüfj	_	Prüfp	_	Prüfp	
Kürzel	Einheit	Mittelwert	Standardabw.														
T_{AA}	°C	408,5	0,5	363,5	0,2	320,9	0,4	228,2	0,6	378,5	1,3	330,7	0,3	274,2	0,3	98,1	0,2
V_{LV}	m³	0,430		0,481		0,467		0,333		0,279		0,299		0,323		0,332	
T_{LV}	°C	29,0	0,5	29,7	0,1	31,6	0,2	31,0	0,1	32,4	0,2	33,1	0,1	33,0	0,1	32,7	0,4
p_{LV}	mbar	55,78		64,63		60,84		65,56		52,27		56,96		63,34		36,83	
T_{LVE}	°C	24,8	0,2	25,0	0,1	25,9	0,2	25,4	0,1	26,1	0,2	26,3	0,1	26,0	0,1	26,3	0,3
T_{MV}	°C	50,5	1,4	49,9	1,0	50,5	0,7	49,9	1,5	49,9	1,5	50,2	0,9	48,9	1,0	50,0	0,5
T_{MF1}	°C	42,3	1,4	44,1	0,4	43,1	0,8	43,3	0,7	44,7	0,8	44,7	1,0	42,9	1,5	45,9	0,4
T_{MF2}	°C																
V_{MA}	m³	0,549		0,592		0,591		0,431		0,348		0,371		0,389		0,560	
T_{MA}	°C	29,1	0,4	30,0	0,1	31,5	0,1	30,9	0,1	32,2	0,2	33,0	0,1	32,7	0,1	32,3	0,3
p_{MA}	mbar	-321,3		-330,5		-325,9		-315,3		-340,7		-332,4		-326,7		-331,3	

Anhang 3: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante DkZy-1

		Prüfp 1	hase	Prüfp 2		Prüfp 3		Prüf _p		Prüf _l		Prüf _l	_	Prüfj			ohase 3
Kürzel	Einheit	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.
T_{LU1}	°C	39,1	0,6	43,6	0,5	43,0	0,0	42,0	0,0	41,0	0,0	37,7	1,0	36,7	0,5	32,6	0,5
T_{LU2}	°C	49,4	0,6	48,1	0,6	45,8	0,4	41,8	0,2	45,6	0,6	44,0	0,6	41,6	0,4	34,6	0,2
t	s	901		901		900		600		601		600		600		900	
Bh		1064		1064		1065		1066		1067		1067		1068		1069	
DH1		aus		aus		aus		aus		aus		aus		aus		aus	
DH2		aus		aus		aus		aus		aus		aus		aus		aus	
T_{LA1}	°C	34,1	0,5	33,5	0,2	32,3	0,2	30,9	0,1	31,2	0,3	31,1	0,1	31,1	0,2	29,8	0,2
T_{LL}	°C	62,2	1,0	53,4	0,7	48,3	0,7	41,0	0,5	47,7	0,6	43,5	0,3	39,2	0,4	33,7	0,4
p_{LL}	mbar	182	0	157	1	138	0	110	0	150	0	130	1	116	0	96	0
T_{KT1}	°C	51,9	0,4	50,0	1,3	49,6	0,5	48,0	0,0	51,8	0,4	48,7	1,0	48,5	0,5	45,0	0,0
T_{KT2}	°C	51,5	1,1	49,0	1,2	49,0	0,5	47,7	0,1	51,2	0,4	48,0	0,5	47,9	0,5	44,3	0,1
T_{KE}	°C	73,6	0,9	68,1	0,8	65,9	0,4	61,8	0,4	69,2	0,8	64,8	0,8	62,8	0,8	56,3	0,5
T_{KR}	°C	68,0	1,1	63,8	1,0	62,6	0,5	59,0	0,0	63,8	0,8	59,7	0,5	58,7	0,5	54,0	0,0
В	l/h	34,9	0,1	28,0	0,3	22,5	0,1	13,0	0,0	23,4	0,0	18,2	0,1	13,5	0,1	4,6	0,1
T_{Oel}	°C	95,3	0,5	88,7	0,5	84,8	0,1	79,7	0,1	89,3	0,5	85,2	0,1	80,7	0,3	74,2	0,1
T_{W}	°C	100,4	0,5	93,6	0,5	91,5	0,5	87,0	0,0	97,0	0,6	92,3	0,5	88,3	0,5	83,0	0,0
n	rpm	2099	3	2080	1	2089	1	2083	1	1396	1	1404	1	1404	1	832	7
P_{TR}	%	100	1	78	1	60	1	30	0	100	0	75	1	53	1	31	1
$M_{\rm Z}$	Nm	445	2	335	2	227	1	41	0	529	1	382	2	252	3	0	
N_{T2}	rpm	2100	2	2079	2	2088	0	2082	2	1396	0	1404	1	1407	3	800	
$P_{\rm Z}$	kW	102,1	0,4	76,2	0,4	51,9	0,2	9,4	0,1	80,9	0,2	58,7	0,3	38,7	0,4	0,0	
G _{FUEL}	kg/h	28,45		22,14		17,21		9,63		18,57		14,07		10,41		1,94	
T_{AZ1}	°C	600,4	1,6	519,0	2,1	453,8	1,2	314,0	0,7	566,6	1,2	470,3	1,1	389,1	1,6	153,0	0,5
T_{AZ2}	°C	607,8	1,6	522,7	1,8	457,3	0,8	316,1	0,6	560,3	1,6	465,7	1,0	374,6	1,6	131,3	0,6
T_{AZ3}	°C	596,4	1,4	523,6	2,3	459,9	0,8	320,1	0,5	558,2	1,0	471,0	1,4	388,8	1,4	134,1	0,5
T_{AZ4}	°C	602,2	1,6	521,8	2,4	458,1	0,6	320,8	0,4	558,6	1,4	470,8	0,8	384,1	1,4	139,8	0,3
T_{AZ5}	°C	599,1	1,4	523,6	2,1	452,3	0,6	326,6	0,5	568,3	1,5	479,8	0,8	389,7	1,8	166,9	0,4
T_{AZ6}	°C	565,6	1,2	481,2	1,7	415,9	0,8	299,3	1,0	499,2	1,9	422,5	0,6	344,6	1,6	150,3	0,8
T_{AE}	°C	455,9	0,7	399,9	1,5	351,6	0,3	244,3	0,4	423,0	1,9	356,7	1,8	293,2	1,3	103,4	0,2

Anhang 3: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante DkZy-1 (Fortsetzung)

		Prüfp 1	ohase	Prüfp 2		Prüfp		Prüfp 4		Prüfp 5		Prüfp		Prüfp		Prüfp 8	
Kürzel	Einheit	Mittelwert	Standardabw.														
T_{AA}	°C	418,4	0,6	369,1	0,9	323,3	0,3	229,5	1,3	365,5	3,3	317,0	1,2	267,7	2,2	99,2	0,8
V_{LV}	m³	0,219		0,247		0,244		0,239		0,182		0,218		0,208		0,243	
T_{LV}	°C	32,1	0,1	32,5	0,5	33,7	0,2	33,8	0,1	33,4	0,3	34,2	0,1	32,8	0,1	31,6	0,1
p_{LV}	mbar	25,99		28,72		27,23		42,88		30,92		38,29		35,47		25,01	
T_{LVE}	°C	27,6	0,5	26,5	0,6	27,0	0,4	26,3	0,2	26,3	0,6	25,4	0,1	24,8	0,3	25,7	0,2
T_{MV}	°C	49,1	2,1	49,9	1,4	51,0	1,8	49,8	1,0	49,2	0,8	49,4	1,2	49,5	1,2	49,1	0,7
T_{MF1}	°C	44,8	1,0	44,3	0,7	41,7	1,8										
T_{MF2}	°C							43,4	0,4	43,3	0,5	45,9	0,6	44,3	0,4	43,9	0,5
V_{MA}	m³	0,359		0,376		0,374		0,338		0,256		0,286		0,285		0,462	
T_{MA}	°C	31,3	0,2	32,0	0,3	33,0	0,1	32,8	0,1	32,4	0,1	33,8	0,1	33,1	0,2	31,3	0,1
p_{MA}	mbar	-317,0		-320,9		-331,1		-317,7		-340,8		-332,0		-333,2		-326,8	

Anhang 4: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante DkZy-2

		Prüfp 1		Prüfp		Prüfp	ohase 3	Prüfp		Prüfj 5	phase	Prüfj		Prüfj	ohase 7	Prüfj 8	ohase
Kürzel	Einheit	Mittelwert	Standardabw.														
T_{LU1}	°C	41,3	0,7	43,5	0,5	42,8	0,5	41,7	0,5	41,2	0,8	36,8	0,4	36,0	0,0	33,0	0,0
T_{LU2}	°C	49,8	0,9	47,9	0,5	46,4	0,3	41,3	0,3	46,9	0,7	43,2	0,4	40,9	0,4	34,5	0,4
t	s	901		900		900		600		602		602		600		901	
Bh		1064		1065		1065		1066		1067		1068		1068		1070	
DH1		aus		aus		aus		aus		aus		aus		aus		aus	
DH2		aus		aus		aus		aus		aus		aus		aus		aus	
T_{LA1}	°C	34,6	0,4	33,4	0,3	32,4	0,2	30,7	0,2	31,8	0,2	31,1	0,2	30,9	0,1	29,6	0,1
T_{LL}	°C	61,3	0,9	53,8	0,7	49,0	0,6	40,7	0,7	48,3	0,5	42,5	0,7	39,4	0,2	33,7	0,2
p_{LL}	mbar	182	0	158	1	140	0	110	0	150	1	132	0	117	1	96	0
T_{KT1}	°C	52,0	0,0	52,0	0,0	51,5	0,5	48,0	0,0	52,0	0,0	50,0	0,0	48,8	0,4	45,0	0,0
T_{KT2}	°C	54,1	0,4	51,6	0,4	50,7	0,3	47,9	0,1	52,5	0,2	49,2	0,2	48,0	0,1	44,3	0,1
T_{KE}	°C	75,5	0,5	69,8	0,5	67,4	0,5	62,0	0,0	70,7	0,5	65,8	0,4	63,0	0,0	57,0	0,0
T_{KR}	°C	70,0	0,5	65,8	0,5	63,9	0,4	59,0	0,0	65,3	0,5	60,7	0,5	59,0	0,0	54,0	0,0
В	l/h	34,7	0,1	28,3	0,1	22,7	0,1	13,1	0,1	23,5	0,1	18,4	0,1	13,7	0,1	4,5	0,1
T_{Oel}	°C	95,5	0,3	88,2	0,1	85,3	0,1	79,5	0,1	90,8	0,5	84,6	0,5	81,1	0,1	74,1	0,0
T_{W}	°C	100,4	0,5	93,8	0,5	91,9	0,4	87,0	0,0	98,0	0,0	92,2	0,4	89,0	0,0	83,0	0,0
n	rpm	2102	2	2079	1	2088	2	2083	1	1400	5	1404	1	1407	2	838	10
P_{TR}	%	99	0	79	0	61	0	30	0	100	0	76	1	54	1	30	2
$M_{\rm Z}$	Nm	443	1	337	1	232	1	41	0	530	1	387	1	256	5	0	
n_{T2}	rpm	2101	2	2078	2	2087	2	2084	1	1399	5	1404	1	1408	3	826	
P_{Z}	kW	101,8	0,3	76,7	0,3	52,9	0,3	9,3	0,1	81,1	0,5	59,5	0,2	39,4	0,7	0,0	
G _{FUEL}	kg/h	28,25		22,20		18,22		9,60		18,90		14,50		10,50		2,08	
T_{AZ1}	°C	598,9	1,3	521,1	1,2	456,7	0,9	313,1	0,9	569,0	0,9	473,1	1,0	391,9	1,1	153,4	0,6
T_{AZ2}	°C	605,3	1,3	525,0	1,1	460,3	0,6	314,7	0,5	565,3	0,9	467,6	1,0	378,4	1,2	131,5	0,4
T_{AZ3}	°C	594,3	1,1	526,5	1,1	461,7	0,7	318,9	0,7	559,4	1,2	474,2	0,7	392,5	1,1	134,6	0,4
T_{AZ4}	°C	599,3	1,2	524,9	1,1	461,0	0,6	319,9	0,5	563,7	1,1	473,2	0,8	388,8	1,2	140,7	0,6
T_{AZ5}	°C	596,9	1,0	526,0	0,9	455,6	0,8	325,7	0,5	573,3	1,2	481,5	1,3	395,7	1,2	167,3	0,4
T_{AZ6}	°C	563,0	1,1	482,0	0,8	419,5	0,8	298,8	0,9	503,9	1,4	426,1	1,0	353,2	0,8	150,2	0,8
T_{AE}	°C	454,7	0,6	402,4	0,6	354,1	0,4	243,5	0,2	427,1	0,4	360,5	0,2	295,7	0,6	103,3	0,1

Anhang 4: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvariante DkZy-2 (Fortsetzung)

		Prüfp 1	ohase	Prüfp 2	ohase	Prüfp 3		Prüf ₁	ohase I	Prüfj 5	ohase	Prüfj		Prüfj	ohase 7	Prüfp 8	
Kürzel	Einheit	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.
T_{AA}	°C	417,7	0,6	369,2	0,3	324,1	0,3	226,4	0,5	373,5	1,1	319,9	0,3	264,9	0,3	97,4	0,3
V_{LV}	m³	0,285		0,290		0,357		0,263		0,221		0,232		0,206		0,306	
T_{LV}	°C	31,9	0,2	32,8	0,3	33,6	0,1	33,6	0,2	34,3	0,2	34,0	0,2	33,2	0,1	31,5	0,0
p_{LV}	mbar	35,03		35,06		44,28		48,83		39,54		41,24		35,25		33,28	
T_{LVE}	°C	26,4	0,2	26,4	0,5	26,7	0,2	25,9	0,2	26,9	0,2	25,5	0,3	26,1	0,2	25,9	0,1
T_{MV}	°C	49,3	1,5	49,3	1,5	49,3	1,4	49,3	0,7	49,1	1,4	49,8	1,3	49,8	1,2	48,5	0,9
T_{MFl}	°C							45,1	0,5	43,7	0,8	44,7	0,3			44,8	0,6
T_{MF2}	°C	43,7	0,8	43,6	0,5	43,7	0,4							43,3	0,7		
V_{MA}	m³	0,402		0,400		0,453		0,349		0,282		0,298		0,286		0,477	
T_{MA}	°C	31,4	0,1	32,3	0,2	32,7	0,1	32,6	0,2	33,1	0,1	33,8	0,1	33,0	0,0	31,2	0,0
p_{MA}	mbar	-315,0		-316,0		-329,0		-313,3		-332,6		-328,7		-332,1		-323,0	

Anhang 5: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvarianten RkP8-1, RkP8-2, DkP8-1

		DK P	8-1/1	DK P	28-1/2	DK P	28-1/3	DK P	8-1/4	RK P	8-1/1	RK P	8-2/1	RK P	P8-1/2	RK P	P8-2/2
Kürzel	Einheit	Mittelwert	Standardabw.														
T_{LU1}	°C	33,0	0,0	32,4	0,5	32,6	0,5	32,6	0,5	38,0	0,0	38,0	0,0	37,1	0,4	36,4	0,5
T_{LU2}	°C	34,1	0,2	33,8	0,2	34,1	0,2	34,3	0,2	35,1	0,9	33,2	0,3	33,5	0,4	33,2	0,3
t	s	900		900		901		901		900		900		901		901	
Bh		1070		1070		1071		1071		1079		1079		1079		1080	
DH1		aus		aus		aus		aus		aus		aus		aus		aus	
DH2		aus		aus		aus		aus		ein		ein		ein		ein	
T_{LA1}	°C	29,4	0,1	29,2	0,1	29,3	0,1	29,1	0,1	29,2	0,2	28,5	0,3	28,3	0,1	28,1	0,1
T_{LL}	°C	33,6	0,1	33,4	0,2	34,2	0,2	34,5	0,1	32,8	0,8	32,8	0,2	32,7	0,1	32,5	0,1
$p_{\rm LL}$	mbar	96	0	96	0	96	0	96	0	96	0	96	0	96	0	96	0
T_{KT1}	°C	45,0	0,0	45,0	0,0	45,0	0,0	45,0	0,0	41,9	0,4	41,0	0,0	41,0	0,0	41,0	0,0
T_{KT2}	°C	44,1	0,1	43,9	0,1	44,2	0,2	44,7	0,1	41,0	0,2	40,1	0,2	39,8	0,0	39,8	0,1
T_{KE}	°C	56,3	0,5	56,1	0,4	56,1	0,4	56,1	0,4	62,3	0,5	62,0	0,0	62,0	0,0	62,0	0,0
T_{KR}	°C	54,0	0,0	54,0	0,0	54,0	0,0	54,0	0,0	60,3	0,5	60,0	0,0	59,6	0,5	59,1	0,4
В	1/h	4,6	0,1	4,6	0,1	4,6	0,1	4,6	0,1	2,5	0,0	2,5	0,0	2,5	0,0	2,5	0,1
T_{Oel}	°C	74,0	0,1	74,0	0,1	74,0	0,1	74,0	0,1	75,0	0,3	74,9	0,1	75,1	0,1	75,0	0,0
T_{W}	°C	83,0	0,0	83,0	0,0	83,0	0,0	83,0	0,0	83,9	0,4	84,0	0,0	84,0	0,0	84,0	0,0
n	rpm	832	12	835	13	831	8	831	8	844	3	845	3	843	2	845	2
P_{TR}	%	31	2	31	3	31	2	31	2	10	0	10	1	10	0	10	0
$M_{\rm Z}$	Nm	0		0		0		0		0		0		0		0	
n_{T2}	rpm	825		830		826		824		833		835		830		830	
P_{Z}	kW	0,0		0,0		0,0		0,0		0,0		0,0		0,0		0,0	
G_{FUEL}	kg/h	1,94		1,78		1,72		1,86		2,38		2,38		2,36		2,32	
T_{AZ1}	°C	152,8	1,0	152,6	0,8	153,9	0,7	154,0	0,6	152,3	0,3	152,9	0,3	153,6	0,6	153,7	0,3
T_{AZ2}	°C	131,4	0,4	131,4	0,4	132,3	0,4	132,4	0,4	133,3	0,4	134,1	0,5	134,7	0,5	135,2	0,4
T_{AZ3}	°C	134,4	0,4	134,8	0,4	134,7	0,5	133,6	0,3	135,9	0,3	136,6	0,2	137,2	0,5	137,5	0,2
T_{AZ4}	°C	140,8	0,3	140,6	0,3	141,6	0,6	142,6	0,3	144,2	0,3	145,1	0,3	145,8	0,5	145,9	0,4
T_{AZ5}	°C	167,9	0,6	168,2	0,3	168,6	0,3	169,4	0,2	166,0	0,3	166,6	0,2	166,9	0,5	167,0	0,2
T_{AZ6}	°C	151,4	0,8	150,3	0,8	150,5	0,8	151,4	0,8	149,5	0,3	150,1	0,3	150,7	0,4	151,1	0,3
T_{AE}	°C	103,4	0,1	103,4	0,1	104,3	0,3	104,4	0,1	103,4	0,1	103,8	0,1	104,0	0,1	104,1	0,2

Anhang 5: Mittelwerte und Standardabweichungen je Prüfphase der Messwerte während der Emissionsmessung der Versuchsvarianten RkP8-1, RkP8-2, DkP8-1 (Fortsetzung)

		DK P	8-1/1	DK P	8-1/2	DK P	8-1/3	DK P	8-1/4	RK F	28-1/1	RK P	P8-2/1	RK P	P8-1/2	RK F	2 8-2/2
Kürzel	Einheit	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.	Mittelwert	Standardabw.								
T_{AA}	°C	96,3	0,2	95,7	0,1	96,0	0,2	96,0	0,1	97,2	0,3	96,8	0,1	96,6	0,1	96,4	0,1
V_{LV}	m³	0,262		0,314		0,288		0,265		0,261		0,249		0,218		0,196	
T_{LV}	°C	31,3	0,0	31,1	0,1	31,3	0,2	31,8	0,1	31,4	0,2	30,9	0,2	30,2	0,2	29,8	0,0
p_{LV}	mbar	27,74		34,87		31,71		28,60		27,01		25,39		21,03		17,88	
T_{LVE}	°C	22,6	0,6	21,3	0,2	21,5	0,4	22,2	0,2	25,9	0,1	25,7	0,2	25,7	0,2	25,5	0,4
T_{MV}	°C	49,9	0,4	49,3	0,6	49,5	0,9	50,5	0,8	49,8	1,1	49,3	1,2	49,2	1,6	49,1	1,7
$T_{ m MF1}$	°C			43,7	1,6			45,0	0,9			43,4	0,8			41,9	0,6
T_{MF2}	°C	45,3	0,8			44,8	0,5			44,7	0,5			43,5	1,2		
V_{MA}	m³	0,505		0,557		0,548		0,538		0,465		0,451		0,410		0,409	
T_{MA}	°C	31,0	0,0	30,9	0,1	31,0	0,2	31,6	0,1	31,2	0,2	30,7	0,3	30,1	0,2	29,7	0,1
p_{MA}	mbar	-384,7		-405,9		-407,8		-409,5		-352,7		-355,6		-364,7		-366,0	

Berichte im Rahmen dieser Schriftenreihe

Berichte aus dem TFZ:

1	Qualitätssicherung bei der dezentralen Pflanzenölerzeugung für den Nicht- Nahrungsbereich Projektphase 1: Erhebung der Ölqualität und Umfrage in der Praxis								
2	Erprobung der Brennwerttechnik bei häuslichen Holzhackschnitzelheizungen mit Sekundärwärmetauscher								
3	Daten und Fakten zur dezentralen Ölgewinnung in Deutschland								
4	Untersuchungen zum Feinstaubausstoß von Holzzentralheizungsanlagen kleiner Leistung								
5	Qualität von kaltgepresstem Rapsöl als Speiseöl und Festlegung eines Qualitätsstandards								
6	Entwicklung einer Prüfmethode zur Bestimmung der Cetanzahl von Rapsölkraftstoff								
7	Untersuchung der Wechselwirkungen zwischen Rapsöl als Kraftstoff und dem Motorenöl in pflanzenöltauglichen Motoren								
8	Wärmegewinnung aus Biomasse – Begleitmaterialien zur Informationsveranstaltung								
9	Maize as Energy Crop for Combustion - Agricultural Optimisation of Fuel Supply								
10	Staubemissionen aus Holzfeuerungen – Einflussfaktoren und Bestimmungsmethoden								
11	Rationelle Scheitholzbereitstellungsverfahren								
12	Qualitätssicherung bei der dezentralen Pflanzenölerzeugung für den Nicht- Nahrungsbereich Technologische Untersuchungen und Erarbeitung von Qualitätssicherungsmaßnahmen								
13	Getreidekörner als Brennstoff für Kleinfeuerungen - Technische Möglichkeiten und Umwelteffekte –								
14	Mutagenität der Partikelemissionen eines mit Rapsöl- und Dieselkraftstoff betriebenen Traktors								

